Phân tích đa thức thành nhân tử:
a) \(x^3+4x^2-29x+24\)
b) \(x^4+6x^3+7x^2-6x+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(=x^3-x^2+5x^2-5x-24x+24\)
\(=x^2\left(x-1\right)+5x\left(x-1\right)-24\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+5x-24\right)\)
\(=\left(x-1\right)\left(x^2-3x+8x-24\right)\)
\(=\left(x-1\right)\left(x\left(x-3\right)+8\left(x-3\right)\right)\)
\(=\left(x-1\right)\left(x-3\right)\left(x+8\right)\)
Lời giải:
a.
$x^2-7x+6=(x^2-x)-(6x-6)=x(x-1)-6(x-1)=(x-1)(x-6)$
b.
$x-3\sqrt{3}x-12\sqrt{3}$ không phân tích được thành nhân tử
c.
$x^2+4x-2$ không phân tích được thành nhân tử với các hệ số nguyên.
`#\text {Kr.Ryo}`
`a)`
`4x^2 - 4x + 1`
`= (2x)^2 - 2*2x*1 + 1^2`
`= (2x - 1)^2`
`b)`
Xem lại đề
`c)`
`2x^2 + 7x + 5`
`= 2x^2 + 2x + 5x + 5`
`= (2x^2 + 2x) + (5x + 5)`
`= 2x(x + 1) + 5(x + 1)`
`= (2x + 5)(x + 1)`
`d)`
`x^2 - 6xy - 25z^2 + 9y^2`
`= (x^2 - 6xy + 9y^2) - 25z^2`
`= [ (x)^2 - 2*x*3y + (3y)^2] - (5z)^2`
`= (x + 3y)^2 - (5z)^2`
`= (x + 3y - 5z)(x + 3y + 5z)`
Lời giải:
a. Không phân tích được nữa
b. $x^2(x-y)+4(y-x)=x^2(x-y)-4(x-y)=(x-y)(x^2-4)=(x-y)(x-2)(x+2)$
c. $x^3+2x^2y+xy^2-4x=x(x^2+2xy+y^2-4)$
$=x[(x^2+2xy+y^2)-4]=x[(x+y)^2-2^2]=x(x+y-2)(x+y+2)$
a: \(=x\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(x-1\right)\)
b: \(=25-\left(x-2y\right)^2\)
\(=\left(5-x+2y\right)\left(5+x-2y\right)\)
a) nhận xét hệ số : 1 + 4 - 29 + 24 = 0
=> x3 + 4x2 - 29x + 24 = x2(x-1) + 5x(x-1) - 24(x-1)
= (x-1)(x2+5x-24) = (x-1)(x-3)(x+8)
b) ...
a) \(x^3+4x^2-29x+24\)=\(\left(x+8\right)\left(x^2-4x+3\right)\)=\(\left(x+8\right)\left(x^2-x-3x+3\right)\)=\(\left(x+8\right)\left(x-1\right)\left(x-3\right)\)
b) \(x^4+6x^3+7x^2-6x+1\)=\(x^4+3x^3-x^2+3x^3+9x^2-3x-x^2-3x+1\)=\(x^2\left(x^2+3x-1\right)+3x\left(x^2+3x-1\right)-\left(x^2+3x-1\right)\)=\(\left(x^2+3x-1\right)\left(x^2+3x-1\right)\)=\(\left(x^2+3x-1\right)^2\)