1. tìm x
(x+1)+(x+4)+(x+7)+(x+10)=62
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x+1)+(x+4)+(x+7)+(x+10)=62
=>4x+22=62
=>4x=62-22
=>4x=40
=>x=10
t tôi nha bn
\(\left(x+1\right)+\left(x+4\right)+\left(x+7\right)+\left(x+10\right)=62\)
\(\Rightarrow x+1+x+4+x+7+x+10=62\)
\(\Rightarrow4x+22=62\)
\(\Rightarrow4x=40\)
\(\Rightarrow x=10\)
\(x\) + \(x\) + \(x\) + \(x\) = 100
\(x\) \(\times\) 1 + \(x\) \(\times\) 1 + \(x\) \(\times\)1 + \(x\) \(\times\) 1 + \(x\) \(\times\) 1 = 100
\(x\) \(\times\) ( 1 + 1 + 1 + 1 + 1 ) = 100
\(x\) \(\times\) 5 = 100
\(x\) = 100 : 5
\(x\) = 20
\(x\) + \(x\) + \(x\) + \(x\) \(\times\) 5 = 200
\(x\) \(\times\) 1 + \(x\) \(\times\) 1 + \(x\) \(\times\)1 + \(x\) \(\times\) 5 = 200
\(x\) \(\times\) ( 1 + 1 + 1 + 5) = 200
\(x\) \(\times\) 8 = 200
\(x\) = 200 : 8
\(x\) = 25
(\(x\) + 1) + (\(x\) + 4) + ( \(x\) + 7) + (\(x\) + 10) = 62
\(x\) + 1 + \(x\) + 4 + \(x\)+ 7 + \(x\) + 10 = 62
( \(x\) + \(x\) + \(x\) + \(x\) ) + ( 1 + 4 + 7 + 10) = 62
( \(x\) \(\times\) 1 + \(x\) \(\times\) 1 + \(x\) \(\times\) 1 + \(x\) \(\times\) 1) + 22 = 62
\(x\) \(\times\) ( 1 + 1 + 1 + 1) + 22 = 62
\(x\) \(\times\) 4 + 22 = 62
\(x\) \(\times\) 4 = 62 - 22
\(x\) \(\times\) 4 = 40
\(x\) = 40 : 4
\(x\) = 10
( x + 1 ) + ( x + 4 ) + ( x + 7 ) + ( x + 10 ) = 62
( x + x + x + x ) + ( 1 + 4 + 7 + 10 ) = 62
4x + 22 = 62
4x = 62 - 22
4x = 40
x = 40 : 4
x = 10
a) x2 + x = 0
=> x( x+ 1 ) = 0
=> x = 0
hoặc x = -1
b) b, (x-1)x+2 = (x-1)x+4
=> x + 2 = x + 4
=> 0x = 2 ( ktm)
Vậy ko có giá trị x nào thoả mãn đk
d) Ta có: x-1/x+5 = 6/7
=>(x-1).7 = (x+5).6
=>7x-7 = 6x+ 30
=> 7x-6x = 7+30
=> x = 37
Vậy x = 37
e, x2/ 6= 24/25
=> x2 . 25 = 6 . 24
⇒
Vậy
<=> \(\frac{1.2.3....31}{4.6.8....64}=2^n\Rightarrow\frac{1.2.3....30.31}{2\left(2.3.4.5...31\right).32}=2^n\Leftrightarrow\frac{1}{2.32}=2^n\Leftrightarrow\frac{1}{2^6}=2^n\)
=> 2^6.2^n = 1
=> 2^ (n + 6 ) = 2^0
=> n+ 6 = 0
=> n = - 6
\(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}....\frac{31}{64}=\frac{1.2.3....31}{4.6.8....64}=\frac{1.2.3....31}{2.3.2.4....2.32}=\frac{1.2.3....31}{2^{30}.\left(3.4....32\right)}=\frac{2}{2^{30}.32}=\frac{1}{2^{34}}=2^{-34}=2^n=>n=-34\)
(x+1)+(x+4)+(x+7)+(x+10)=62
( x + x + x + x ) + ( 1 + 4 + 7 + 10 ) = 62
4x + 22 = 62
4x = 62 - 22
4x = 40
x = 40 : 4
x = 10
(x + 1) + (x + 4) + (x + 7) + (x + 10) = 62
x + 1 + x + 4 + x + 7 + x + 10 = 62
4x + 22 = 62
4x = 40
=> x = 40 / 10 = 4