K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔOBC cân tại O có OI là trung tuyến

nên OI vuông góc BC

góc AMO=góc ANO=góc AIO=90 độ

=>A,M,O,I,N cùng thuộc 1 đường tròn

b: Xét (O) có

AM,AN là tiếp tuyến

=>AM=AN

mà OM=ON

nên OA là trung trực của MN

=>OA vuông góc MN tại H

=>AH*AO=AM^2

Xét ΔAMB và ΔACM có

góc AMB=góc ACM

góc MAB chung

=>ΔAMB đồng dạng với ΔACM

=>AM/AC=AB/AM

=>AM^2=AB*AC=AH*AO

2 tháng 8 2017

Gọi I là giao điểm của MN và AC.

Ta có: \(\widehat{IHO}=\widehat{OEI}=90°\)

\(\Rightarrow\)Tứ giác EIHO nội tiếp đường tròn.

\(\Rightarrow\)Tâm của đường tròn ngoại tiếp ∆OHE nằm trên đường trung trực của EI.(*)

Ta có ∆AIH \(\approx\)∆AOE 

\(\Rightarrow\)AH.AO = AE.AI (1)

Ta có: ∆AMB \(\approx\)AOM

\(\Rightarrow\)AM2 = AH.AO (2)

Ta lại có: ∆ABM \(\approx\)∆AMC

\(\Rightarrow\)AM2 = AB.AC (3)

Từ (1), (2), (3) \(\Rightarrow\)AE.AI = AB.AC

Vì A,B,C,E cố định nên I cố định (**)

Từ (*), (**) suy ta tâm đường tròn ngoại tiếp ∆OHE nằm trên đường trung trực của EI.

PS: không chứng minh được nó nằm trên đường tròn nha b. Hình tự vẽ.

3 tháng 8 2017

bạn cho mình hỏi tại sao tam giác ABM đồng dạng với tam giác AMC vậy?. Mình ko hiểu chỗ đó

a: ΔOBC cân tại O

mà OM là đường trung tuyến

nên OM\(\perp\)BC tại M

Xét tứ giác KAOM có

\(\widehat{OAK}+\widehat{OMK}=90^0+90^0=180^0\)

=>KAOM là tứ giác nội tiếp

=>K,A,O,M cùng thuộc một đường tròn

b: AH\(\perp\)BC

OM\(\perp\)BC

Do đó: AH//OM

Xét ΔNAH có

O là trung điểm của NA

OM//AH

Do đó: M là trung điểm của NH

Xét tứ giác BHCN có

M là trung điểm chung của BC và HN

=>BHCN là hình bình hành

c: Xét (O) có

ΔACN nội tiếp

AN là đường kính

Do đó: ΔACN vuông tại C

=>CN\(\perp\)CA

BHCN là hình bình hành

=>BH//CN

Ta có: BH//CN

CN\(\perp\)CA

Do đó: BH\(\perp\)AC

Xét ΔABC có

BH,AH là các đường cao

BH cắt AH tại H

Do đó: H là trực tâm của ΔABC

 

23 tháng 1 2022

chiuj

3 tháng 11 2018

a, Chú ý:  A M O ^ = A I O ^ = A N O ^ = 90 0

b,  A M B ^ = M C B ^ = 1 2 s đ M B ⏜

=> DAMB ~ DACM (g.g)

=> Đpcm

c, AMIN nội tiếp => A M N ^ = A I N ^

BE//AM => A M N ^ = B E N ^

=>   B E N ^ = A I N ^ => Tứ giác BEIN nội tiếp =>  B I E ^ = B N M ^

Chứng minh được:  B I E ^ = B C M ^ => IE//CM

d, G là trọng tâm DMBC Þ G Î MI

Gọi K là trung điểm AO Þ MK = IK = 1 2 AO

Từ G kẻ GG'//IK (G' Î MK)

=>  G G ' I K = M G M I = M G ' M K = 2 3 I K = 1 3 A O  không đổi   (1)

MG' =  2 3 MK => G' cố định (2). Từ (1) và (2) có G thuộc (G'; 1 3 AO)