K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2016

xin lỗi nha 

em ko bit

21 tháng 11 2016

Zậy có 2 bik ko

18 tháng 8 2016

LỜI GIẢI :

Trên nửa mặt phẳng chứa C bờ là đường thẳng DH dựng tam giác đều DHN .Gọi Q là trung điểmDC ta có :

AD = DQ = QC

DH = HN ( DHN đều )

Từ đó suy ra

Tức là CHD cân tại C .Mà (1)

Do tam giác ADM vuông cân tại A nên (2)

Xét tam giác DHK từ (1) và (2) suy ra (3)

Từ (1) và(3) suy ra tam giác DHK cân tại D Tức là DH = DK

12 tháng 7 2015

GIẢI :

Trên nửa mặt phẳng chứa C bờ là đường thẳng DH dựng tam giác đều DHN .Gọi Q là trung điểmDC ta có :

AD = DQ = QC

DH = HN ( DHN đều )

Từ đó suy ra

Tức là CHD cân tại C .Mà (1)

Do tam giác ADM vuông cân tại A nên (2)

Xét tam giác DHK từ (1) và (2) suy ra (3)

Từ (1) và(3) suy ra tam giác DHK cân tại D Tức là DH = DK

24 tháng 11 2016

Bn có thể giải thik rõ hơn hok

2 tháng 8 2015

H thuộc AB thì góc ADH < 90o , không thể = 150o được. Bạn xem lại đề nhé

a: Xét tứ giác ADBK có

M là trung điểm chung của AB và DK

=>ADBK là hình bình hành

=>AK=DB

mà DB=AC(ABCD là hình chữ nhật)

nên AK=AC

=>ΔAKC cân tại A

b: Xét ΔIAM có IE là phân giác

nên \(\dfrac{ME}{EA}=\dfrac{IM}{IA}\)

mà IA=IK

nên \(\dfrac{ME}{EA}=\dfrac{IM}{IK}\)

Xét ΔIMK có IF là phân giác

nên \(\dfrac{IM}{IK}=\dfrac{MF}{FK}\)

=>\(\dfrac{ME}{EA}=\dfrac{MF}{FK}\)

Xét ΔMAK có \(\dfrac{ME}{EA}=\dfrac{MF}{FK}\)

nên EF//AK

Ta có: EF//AK

AK//BD(AKBD là hình bình hành)

Do đó: EF//BD

NV
13 tháng 1

a.

Xét tứ giác ADBK có: hai đường chéo AB và DK cắt nhau tại trung điểm M của mỗi đường

\(\Rightarrow ADBK\) là hình bình hành

Do ABCD là hình chữ nhật \(\Rightarrow AB\perp BC\Rightarrow AB\) là đường cao tam giác ACK

Theo cmt, ADBK là hbh \(\Rightarrow BK=AD\)

Mà \(AD=BC\) (ABCD là hcn)

\(\Rightarrow BK=BC\Rightarrow AB\) là trung tuyến tam giác ACK

\(\Rightarrow AB\) vừa là đường cao vừa là trung tuyến nên tam giác ACK cân tại A

b.

Do IE là phân giác, áp dụng định lý phân giác trong tam giác IAM:

\(\dfrac{EM}{EA}=\dfrac{IM}{IA}\) (1)

Do IF là phân giác, áp dụng định lý phân giác trong tam giác IMK:

\(\dfrac{FM}{FK}=\dfrac{IM}{IK}\) (2)

Mà I là trung điểm AK \(\Rightarrow IA=IK\) (3)

(1);(2);(3) \(\Rightarrow\dfrac{EM}{EA}=\dfrac{FM}{FK}\Rightarrow EF||AK\) (định lý Talet đảo)

Theo c/m câu a do ADBK là hình bình hành \(\Rightarrow AK||BD\)

\(\Rightarrow EF||BD\)

NV
13 tháng 1

loading...