K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2017

A B C D O

xét hình thang cân ABCD có AB//CD(gt)

\(\Rightarrow\)^CDA=^BAO(2 góc đồng vị) và ^DCB=^ABO

Do ABCD là hìng thang cân nên ^CDA=^DCB

nên ^BAO=^ABO

Xét tam giác ABO có

^BAO=^ABO nên tam giác ABO cân(đpcm)

loading...  loading...  

25 tháng 8 2023

Can you help me with this exercise?

 

29 tháng 6 2017

a, xét tam giac ADC và tam giác BDC có :

AC=BD 

góc ACD =BDC

Cạnh CD chung

6 tháng 4 2018

a) Xét hai tam giác vuông ABC và tam giác vuông ADC có:

Cạnh AC chung

BA = DA

\(\Rightarrow\Delta ABC=\Delta ADC\)   (Hai cạnh góc vuông)

\(\Rightarrow BC=DC\)

Hay tam giác BCD cân tại C.

b) Xét tam giác BKN và tam giác CDN có:

BN = CN

\(\widehat{BNK}=\widehat{CND}\)   (Đối đỉnh)

\(\widehat{KBN}=\widehat{DCN}\)   (So le trong)

\(\Rightarrow\Delta BKN=\Delta CDN\left(g-c-g\right)\)

\(\Rightarrow DN=KN\)

c) Do AM // BC nên \(\widehat{MAC}=\widehat{BCA}\)  

Mà \(\widehat{BCA}=\widehat{ACM}\) nên \(\widehat{MAC}=\widehat{MCA}\Rightarrow MA=MC\)

Từ đó ta cũng có \(\widehat{DAM}=\widehat{MDA}\Rightarrow MD=MA\)

Vậy nên MD = MC hay M là trung điểm DC

Xét tam giác DBC có DN, CA, BM là các đường trung tuyến nên chúng đồng quy tại một điểm.

Lại có AC giao N tại O nên O thuộc BM hay B, M, O thẳng hàng.

17 tháng 8 2018

Bài giải : 

a) Xét hai tam giác vuông ABC và tam giác vuông ADC có:

Cạnh AC chung

BA = DA

⇒ΔABC=ΔADC   (Hai cạnh góc vuông)

⇒BC=DC

Hay tam giác BCD cân tại C.

b) Xét tam giác BKN và tam giác CDN có:

BN = CN

^BNK=^CND   (Đối đỉnh)

^KBN=^DCN   (So le trong)

⇒ΔBKN=ΔCDN(g−c−g)

⇒DN=KN

c) Do AM // BC nên ^MAC=^BCA  

Mà ^BCA=^ACM nên ^MAC=^MCA⇒MA=MC

Từ đó ta cũng có ^DAM=^MDA⇒MD=MA

Vậy nên MD = MC hay M là trung điểm DC

Xét tam giác DBC có DN, CA, BM là các đường trung tuyến nên chúng đồng quy tại một điểm.

Lại có AC giao N tại O nên O thuộc BM hay B, M, O thẳng hàng.

4 tháng 4 2018

lên mạng mà tra

20 tháng 7 2018

a) Do MN, NP, PQ, QM lần lượt là các đường trung bình các tam giác ABC, ACD, BDC, ABD

=> MN//BC, NP//AD, QP//BC, QM//AD  => MNPQ là hình bình hành

b) Do AB//CD => \(\widehat{AMP}=\widehat{CPM}\)

Từ câu trên => \(\widehat{QMP}=\widehat{NPM}\)

Từ 2 điều trên => \(\widehat{AMI}=\widehat{CPN}\)

Mà \(\widehat{MAI}=\widehat{PCN}\)=> T/g AMI đồng dạng t/g CPN

c) Gọi giao AD và BC là E, giao OE và CD là P', giao OE và AB là M'

Ta có AM'/P'C = OM'/OP' = M'B/DP'

AM'/DP' = EM'/  EP' = M'B/P'C

Từ 2 điều trên => DP'/P'C = P'C/DP' => P'D = P'C => P' trùng P mà AM'/M'B = DP/PC = 1

=> M' trùng M ( đây còn là bổ đề hình thang gồm ngược và đảo )

=> M,O,P thẳng hàng (đpcm)

a: Xét ΔABC có

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//BC