Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tam giac ADC và tam giác BDC có :
AC=BD
góc ACD =BDC
Cạnh CD chung
a) Xét hai tam giác vuông ABC và tam giác vuông ADC có:
Cạnh AC chung
BA = DA
\(\Rightarrow\Delta ABC=\Delta ADC\) (Hai cạnh góc vuông)
\(\Rightarrow BC=DC\)
Hay tam giác BCD cân tại C.
b) Xét tam giác BKN và tam giác CDN có:
BN = CN
\(\widehat{BNK}=\widehat{CND}\) (Đối đỉnh)
\(\widehat{KBN}=\widehat{DCN}\) (So le trong)
\(\Rightarrow\Delta BKN=\Delta CDN\left(g-c-g\right)\)
\(\Rightarrow DN=KN\)
c) Do AM // BC nên \(\widehat{MAC}=\widehat{BCA}\)
Mà \(\widehat{BCA}=\widehat{ACM}\) nên \(\widehat{MAC}=\widehat{MCA}\Rightarrow MA=MC\)
Từ đó ta cũng có \(\widehat{DAM}=\widehat{MDA}\Rightarrow MD=MA\)
Vậy nên MD = MC hay M là trung điểm DC
Xét tam giác DBC có DN, CA, BM là các đường trung tuyến nên chúng đồng quy tại một điểm.
Lại có AC giao N tại O nên O thuộc BM hay B, M, O thẳng hàng.
Bài giải :
a) Xét hai tam giác vuông ABC và tam giác vuông ADC có:
Cạnh AC chung
BA = DA
⇒ΔABC=ΔADC (Hai cạnh góc vuông)
⇒BC=DC
Hay tam giác BCD cân tại C.
b) Xét tam giác BKN và tam giác CDN có:
BN = CN
^BNK=^CND (Đối đỉnh)
^KBN=^DCN (So le trong)
⇒ΔBKN=ΔCDN(g−c−g)
⇒DN=KN
c) Do AM // BC nên ^MAC=^BCA
Mà ^BCA=^ACM nên ^MAC=^MCA⇒MA=MC
Từ đó ta cũng có ^DAM=^MDA⇒MD=MA
Vậy nên MD = MC hay M là trung điểm DC
Xét tam giác DBC có DN, CA, BM là các đường trung tuyến nên chúng đồng quy tại một điểm.
Lại có AC giao N tại O nên O thuộc BM hay B, M, O thẳng hàng.
a) Do MN, NP, PQ, QM lần lượt là các đường trung bình các tam giác ABC, ACD, BDC, ABD
=> MN//BC, NP//AD, QP//BC, QM//AD => MNPQ là hình bình hành
b) Do AB//CD => \(\widehat{AMP}=\widehat{CPM}\)
Từ câu trên => \(\widehat{QMP}=\widehat{NPM}\)
Từ 2 điều trên => \(\widehat{AMI}=\widehat{CPN}\)
Mà \(\widehat{MAI}=\widehat{PCN}\)=> T/g AMI đồng dạng t/g CPN
c) Gọi giao AD và BC là E, giao OE và CD là P', giao OE và AB là M'
Ta có AM'/P'C = OM'/OP' = M'B/DP'
AM'/DP' = EM'/ EP' = M'B/P'C
Từ 2 điều trên => DP'/P'C = P'C/DP' => P'D = P'C => P' trùng P mà AM'/M'B = DP/PC = 1
=> M' trùng M ( đây còn là bổ đề hình thang gồm ngược và đảo )
=> M,O,P thẳng hàng (đpcm)
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//BC