K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2023

a: Xét (O) có

\(\widehat{BAM}\) là góc nội tiếp chắn cung BM

\(\widehat{CAM}\) là góc nội tiếp chắn cung CM

\(\widehat{BAM}=\widehat{CAM}\)(AM là phân giác của góc BAC)
Do đó: \(sđ\stackrel\frown{BM}=sđ\stackrel\frown{CM}\)

=>MB=MC

=>M nằm trên đường trung trực của BC(1)

OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OM là đường trung trực của BC

=>OM\(\perp\)BC

b: Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

Xét (O) có

\(\widehat{ADC}\) là góc nội tiếp chắn cung AC

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{ADC}=\widehat{ABC}\)

Xét ΔACD vuông tại C và ΔAHB vuông tại H có

\(\widehat{ADC}=\widehat{ABH}\)

Do đó: ΔACD đồng dạng với ΔAHB

=>\(\widehat{CAD}=\widehat{HAB}\)

\(\widehat{BAH}+\widehat{HAM}=\widehat{BAM}\)

\(\widehat{CAD}+\widehat{MAD}=\widehat{CAD}\)

mà \(\widehat{BAH}=\widehat{CAD}\) và \(\widehat{BAM}=\widehat{CAD}\)

nên \(\widehat{HAM}=\widehat{MAD}\)

=>\(\widehat{IAM}=\widehat{DAM}\)

=>AM là phân giác của góc IAD

c: Xét (O) có

\(\widehat{IAM}\) là góc nội tiếp chắn cung IM

\(\widehat{DAM}\) là góc nội tiếp chắn cung DM

\(\widehat{IAM}=\widehat{DAM}\)

Do đó: \(sđ\stackrel\frown{IM}=sđ\stackrel\frown{DM}\)

=>IM=DM

=>M nằm trên đường trung trực của DI(3)

OI=OD

=>O nằm trên đường trung trực của DI(4)

Từ (3) và (4) suy ra OM là đường trung trực của DI

=>OM\(\perp\)DI

mà OM\(\perp\)BC

nên DI//BC

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn...
Đọc tiếp

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC

2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB

3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)

4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)

5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O

6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD

0

a: Xét (O) có

ΔAHB nội tiếp

AB là đường kính

Do đó: ΔAHB vuông tại H

hay AH⊥BC

b: Sửa đề: M là trung điểm của AC

Ta có: ΔAHC vuông tại H

mà HM là đường trung tuyến

nên HM=AM=AC/2

Xét ΔMAO và ΔMHO có

MA=MH

MO chung

OA=OH

Do đó: ΔMAO=ΔMHO

Suy ra: \(\widehat{MAO}=\widehat{MHO}=90^0\)

hay HM là tiếp tuyến của (O)

24 tháng 3 2017

Đường tròn c: Đường tròn qua B_1 với tâm O Đoạn thẳng f: Đoạn thẳng [A, B] Đoạn thẳng g: Đoạn thẳng [B, C] Đoạn thẳng h: Đoạn thẳng [A, C] Đoạn thẳng l: Đoạn thẳng [A, M] Đoạn thẳng m: Đoạn thẳng [N, E] Đoạn thẳng n: Đoạn thẳng [B, E] Đoạn thẳng p: Đoạn thẳng [N, M] Đoạn thẳng q: Đoạn thẳng [N, B] Đoạn thẳng r: Đoạn thẳng [A, K] O = (0.22, 2.54) O = (0.22, 2.54) O = (0.22, 2.54) Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm E: Giao điểm của j, k Điểm E: Giao điểm của j, k Điểm E: Giao điểm của j, k Điểm N: Điểm trên j Điểm N: Điểm trên j Điểm N: Điểm trên j Điểm D: Giao điểm của i, k Điểm D: Giao điểm của i, k Điểm D: Giao điểm của i, k Điểm M: Giao điểm của c, i Điểm M: Giao điểm của c, i Điểm M: Giao điểm của c, i Điểm K: Trung điểm của E, D Điểm K: Trung điểm của E, D Điểm K: Trung điểm của E, D Điểm I: Giao điểm của g, p Điểm I: Giao điểm của g, p Điểm I: Giao điểm của g, p

a. Do AN và AM là hai tia phân giác nên \(AN⊥AM\). Vậy thì MN là đường kính của đường tròn O.

Theo tính chất đường kính dây cung, MN vuông góc với BC tại trung điểm BC.

b. Do tam giác AED vuông tại A, K là trung điểm DE nên \(\widehat{EAK}=\widehat{AEK}=\frac{sđ\widebat{NC}-sđ\widebat{AB}}{2}\)(Góc có đỉnh bên ngoài đường tròn)

Lại có MN là đường kính nên \(sđ\widebat{NB}+sđ\widebat{BM}=sđ\widebat{NC}+sđ\widebat{CM}\);

Lại do AM là phân giác nên \(\widehat{BAM}=\widehat{CAM}\Rightarrow sđ\widebat{BM}=sđ\widebat{CM}\) (Góc nội tiếp)

Vậy thì \(sđ\widebat{NB}=sđ\widebat{NC}\)

Khi đó \(\widehat{EAK}=\widehat{AEK}=\frac{sđ\widebat{NC}-sđ\widebat{AB}}{2}=\frac{sđ\widebat{NB}-sđ\widebat{AB}}{2}=\frac{sđ\widebat{AN}}{2}=\widehat{ABN}\) (góc nội tiếp).

a: AM là phân giác của góc BAC
=>BM=CM

mà OB=OC

nên OM là trung trực của BC

=>OM vuông góc BC

b: Xét ΔHBA vuông tại H và ΔCDA vuông tại C có

góc HBA=góc CDA

=>ΔHBA đồng dạng với ΔCDA

=>góc BAH=góc DAC

=>góc IAM=góc DAM

=>AM là phân giác của góc IAD

c: AM là phân giác của góc IAD

nên sđ cung IM=sđ cung MD

=>IM=MD

=>OM là trung trực của ID

=>OM vuông góc ID

=>ID//BC