Cho hai đường thẳng xy // x’y’, đường thẳng d cắt xy và x’y’ tại A và B. Kẻ tia phân giác AA’ của xAB cắt x’y’ tại A’ và tia phân giác BB’ của ABy’ cắt xy tại B’. Chứng minh rằng: a) AA’ // BB’. b) AA’B = AB’B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: xy//x'y' nên xAB ^ = ABy' (hai góc so le trong).
AA' là tia phân giác của xAB nên A1 = A2 = 1/2 xAB
BB' là tia phân giác của ABy' nên B1 = B2 = 1/2 ABy'
Từ trên ta có A2 = B1
Mà hai góc ở vị trí so le trong, nên
=> AA' // BB/ (có 2 góc so le trong bằng nhau)
b, xy//x'y' nên A1 = AA'B (2 góc so le trong)
AA'//BB' nên A1 = AB'B(2 góc đồng vị)
Vậy AA'B = AB'B
a) nên (hai góc so le trong). (1)
là tia phân giác của nên: . (2)
là tia phân giác của nên: . (3)
Từ (2) và (3) ta có:
Mà hai góc ở vị trí so le trong, nên từ (1), (2), (3) ta có: // (có 2 góc so le trong bằng nhau).
b) nên (hai góc so le trong).
nên (hai góc đồng vị).
Vậy .
a) // nên (hai góc so le trong). (1)
là tia phân giác của nên: (2)
là tia phân giác của nên: (3)
Từ (1), (2), (3) ta có: .
Mà hai góc ở vị trí so le trong, nên
b) // nên (hai góc so le trong).
nên (hai góc đồng vị).
Vậy .
a) // nên (hai góc so le trong). (1)
là tia phân giác của nên: (2)
là tia phân giác của nên: (3)
Từ (1), (2), (3) ta có: .
Mà hai góc ở vị trí so le trong, nên
b) // nên (hai góc so le trong).
nên (hai góc đồng vị).
Vậy .
CM: a) Do AM là tia p/giác của góc xAB nên :
\(\widehat{xAM}=\widehat{MAB}=\frac{\widehat{xAB}}{2}\)
Do BN là tia p/giác của góc ABy' nên :
\(\widehat{ABN}=\widehat{NBy'}=\frac{\widehat{ABy'}}{2}\)
Mà \(\widehat{xAB}=\widehat{ABy'}\) (so le trong vì xy // x'y')
=> \(\widehat{MAB}=\widehat{ABN}\)
mà 2 góc này ở vị trí so le trong
=> AM // BN (Đpcm)
b) Xét t/giác AMB và t/giác BNA
có : \(\widehat{MAB}=\widehat{ABN}\)(cmt)
AB : chung
\(\widehat{MBA}=\widehat{NAB}\) (so le trong vì xy // x'y')
=> t/giác AMB = t/giác BNA (g.c.g)
=> \(\widehat{AMB}=\widehat{ANB}\)(2 góc t/ứng)