Help meeeee. E đang cần gấp.
So sánh
A=17^18+1/17^19 và B=17^17+1/17^18+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(17A=\dfrac{17^{19}+17}{17^{19}+1}=1+\dfrac{16}{17^{19}+1}\)
\(17B=\dfrac{17^{18}+17}{17^{18}+1}=1+\dfrac{16}{17^{18}+1}\)
mà 17^19+1>17^18+1
nên A<B
b: \(2C=\dfrac{2^{2021}-2}{2^{2021}-1}=1-\dfrac{1}{2^{2021}-1}\)
\(2D=\dfrac{2^{2022}-2}{2^{2022}-1}=1-\dfrac{1}{2^{2022}-1}\)
2^2021-1<2^2022-1
=>1/2^2021-1>1/2^2022-1
=>-1/2^2021-1<-1/2^2022-1
=>C<D
Nếu nghĩ kĩ thì thấy bài này cũng đơn giản thôi.Thử xem cách giải của mk nè:
Giải: Ta có: A=\(\frac{17^{18}+1}{17^{19}+1}\) B=\(\frac{17^{17}+1}{17^{18}+1}\)
17A=\(\frac{17^{19}+17}{17^{19}+1}\) 17B=\(\frac{17^{18}+17}{17^{18}+1}\)
17A=\(\frac{\left(17^{19}+1\right)+16}{17^{19}+1}\) 17B=\(\frac{\left(17^{18}+1\right)+16}{17^{18}+1}\)
17A=\(\frac{17^{19}+1}{17^{19}+1}+\frac{16}{17^{19}+1}\) 17B=\(\frac{17^{18}+1}{17^{18}+1}+\frac{16}{17^{18}+1}\)
17A=\(1+\frac{16}{17^{19}+1}\) 17B= \(1+\frac{16}{17^{18}+1}\)
Lại có: 1719+1>1718+1
Suy ra:\(\frac{16}{17^{19}+1}< \frac{16}{17^{18}+1}\)
17A<17B
A<B
Vậy A<B
\(\text{Ta có:}\frac{17^{18}+1}{17^{19}+1}\)
\(\Rightarrow17A=\frac{17^{19}+1+16}{17^{19}+1}\)
\(\Rightarrow17A=1+\frac{16}{17^{19}+1}\)
\(B=\frac{17^{17}+1}{17^{18}+1}\)
\(\Rightarrow17B=\frac{17^{18}+1+16}{17^{18}+1}\)
\(\Rightarrow17B=1+\frac{16}{17^{18}+1}\)
\(\text{Vì }\frac{16}{17^{19}+1}< \frac{16}{17^{18}+1}\)
\(\Rightarrow17A< 17B\)
\(\Rightarrow A< B\)
Ta có công thức :
\(\frac{a}{b}< \frac{a+c}{b+c}\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)
Áp dụng vào ta có :
\(A=\frac{17^{18}+1}{17^{19}+1}< \frac{17^{18}+1+16}{17^{19}+1+16}\)
\(=\frac{17^{18}+17}{17^{19}+17}\)
\(=\frac{17\left(17^{17}+1\right)}{17\left(17^{18}+1\right)}\)
\(\Leftrightarrow\frac{17^{17}+1}{17^{18}+1}\)'
\(\Rightarrow=B\)
Vậy \(A< B\)
Để so sánh A =1718+1/1719+1 và B=1717+1/1718+1
=>Ta xét bài toán phụ sau
a/b<1 thì a/b<a+/b+m
vì a/b<1=>a<b mà m thuộc N*
=>a.m<b.m=>ab+am<ab+bm
a/b=a.(b+m0/b.(b+m)/b(b+m=ab+am/b(b+m)<ab+bm/b(b+m)
Vì b(b+m)>0=>a/b<ab+bm/b(b+m)=b(a+m)/b(b+m)=a+m/b+m
=>.a/b<a+m/b+m(1)
vì 1718+ 1 < 1719+1
=>A<1
(1)=>1718+1/1719+1<1718+1+16/1719+1+16
<=>A<1717+17/1719+17=17(1717+1)/1791718+1)
<=>A<1717+1/1718+1=B
<=>A<B
Vậy...
Bài 1:
1: \(17A=\dfrac{17^{19}+17}{17^{19}+1}=1+\dfrac{16}{17^{19}+1}\)
\(17B=\dfrac{17^{18}+17}{17^{18}+1}=1+\dfrac{16}{17^{18}+1}\)
mà \(17^{19}+1>17^{18}+1\)
nên 17A>17B
hay A>B
2: \(C=\dfrac{98^{99}+98^{10}+1-98^{10}}{98^{89}+1}=98^{10}+\dfrac{1-98^{10}}{98^{89}+1}\)
\(D=\dfrac{98^{98}+98^{10}+1-98^{10}}{98^{88}+1}=98^{10}+\dfrac{1-98^{10}}{98^{88}+1}\)
mà \(98^{89}+1>98^{88}+1\)
nên C>D
1) Phân tích A ra :
A= 1717.17+$\frac{1}{17^{18}.17}$11718.17 +1 So sánh với B ta có: A có 1718>1717 của B nhưng B lại có 1/1718>1/1719.
Mà 1718>1/1718 nên suy ra A>B
A=(17^18+1)/(17^19+1)
17A=17(17^18+1)/17^19+1=17^19+17/17^19+1
17A=(17^19+1)+16/(17^19+1)=1+16/17^19+1
B=(17^17+1)/(17^18+1)
17B=17(17^17+1)/17^18+1=17^18+17/17^18+1
17B=(17^18+1)+16/(17^18+1)=1+16/17^18+1
Từ (1) và (2)⇒1+16/17^19+1<1+16/17^18+1
=> 17A<17B
Hay A<B
Vậy A<B