chứng minh rằng : A= 11...1 * 10...05 +1 là số chính phương. biết rằng có 1995 chữ số 1 và có 1994 chữ số 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\frac{999...9}{9}.\left(1000...0+5\right)+1\) (1995 chữ số 9 và 1995 chữ số 0)
\(C=\frac{1000...0-1}{9}.\left(1000...0+5\right)+1\) (1995 chữ số 0)
\(C=\frac{10^{1995}-1}{9}.\left(10^{1995}+5\right)+1\)
\(C=\frac{\left(10^{1995}\right)^2+4.10^{1995}-5}{9}+1=\left(\frac{10^{1995}}{3}\right)^2+2.\frac{10^{1995}}{3}.\frac{2}{3}-\frac{5}{9}+1\)
\(C=\left(\frac{10^{1995}}{3}\right)^2+2.\frac{10^{1995}}{3}.\frac{2}{3}+\left(\frac{2}{3}\right)^2=\left(\frac{10^{1995}}{3}+\frac{2}{3}\right)^2\) Là số chính phương
Số chính phương luôn có dạng 3n+1 hoặc 3n-1 (n ∈ N)
Vì 111...1 có 1995 chữ số 1 nên tổng các chữ số của của nó là 1995.1 = 1995 chia hết cho 3
Vì 1000...05 có 1994 chữ số 0 nên tổng các chữ số của nó là 1 + 1994.0 + 5 = 6 chia hết cho 3
Suy ra 111...11 . 1000...05 chia hết cho 3
Tích đó lại cộng thêm một, ứng với dạng đúng của một chính phương : 3n + 1
Vậy N là số chính phương.
Số chính phương luôn có dạng 3n+1 hoặc 3n-1 (n $∈$∈ N)
Vì 111...1 có 1995 chữ số 1 nên tổng các chữ số của của nó là 1995.1 = 1995 chia hết cho 3
Vì 1000...05 có 1994 chữ số 0 nên tổng các chữ số của nó là 1 + 1994.0 + 5 = 6 chia hết cho 3
Suy ra 111...11 . 1000...05 chia hết cho 3
Tích đó lại cộng thêm một, ứng với dạng đúng của một chính phương : 3n + 1
Vậy N là số chính phương.
N = 111...1 x 10...0005 có 2 chữ số tận cùng là 55 + 1 =......56
Mà số chính phương có chữ số tận cùng là 6 thì chữ số hàng chục là số lẻ.
Ở đây chữ số hàng chục là 5 => N là số chính phương
A = 11.....1 ( 2013 chữ số 1) × 100....05 ( 2012 chữ số 0) - 66....6 ( 2013 chữ số 6)
A = 11.....1 ( 2013 chữ số 1) × 100....05 ( 2012 chữ số 0) - 6 × 11....1 ( 2013 chữ số 6)
A = 11.....1 ( 2013 chữ số 1) × ( 100....05 ( 2012 chữ số 0) - 6)
A = 11.....1 ( 2013 chữ số 1) × 99....9 ( 2013 chữ số 9)
A = 11....1 ( 2013 chữ số 1) × 3 × 33....3 ( 2013 chữ số 3)
A = 33....3 ( 2013 chữ số 3) × 33....3 ( 2013 chữ số 3)
A = 33....32 ( 2013 chữ số 3)