cho các hàm số f(x)=3x+1 và g(x)=1-3x. Tính f(-1)+g(-1). Tìm x sao cho f(x)=g(x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Để \(F\left(x\right)=G\left(x\right)\) thì \(3x^2-8x+4=3x+4\)
\(\Leftrightarrow3x^2-11x=0\)
\(\Leftrightarrow x\left(3x-11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{11}{3}\end{matrix}\right.\)
f(x)=x^3-2x^2+3x+1
g(x)=x^3+x^2-5x+3
a: f(-1/3)=-1/27-2/9-1+1=-1/27-6/27=-7/27
g(-2)=-8+4+10+3=17-8=9
b: f(x)-g(x)=x^3-2x^2+3x+1-x^3-x^2+5x-3
=x^2+8x-2
f(x)+g(x)
=x^3-2x^2+3x+1+x^3+x^2-5x+3
=2x^3-x^2-2x+4
câu 4: b, đề bài là tính giá trị của A tại x =-1/2;y=-1
Tk
Bài 2
a) F(x)-G(x)+H(x)= \(x^3-2x^2+3x+1-\left(x^3+x-1\right)+\left(2x^2-1\right)\)
= \(x^3-2x^2+3x+1-x^3-x+1+2x^2-1\)
= \(x^3-x^3-2x^2+2x^2+3x-x+1+1-1\)
= 2x + 1
b) 2x + 1 = 0
2x = -1
x=\(\dfrac{-1}{2}\)
Ta có: \(f'\left(x\right)=\dfrac{3}{2\sqrt{3x+1}}\)
Do đó, \(f\left(1\right)=2,f'\left(1\right)=\dfrac{3}{4}\)
Vậy \(g\left(2\right)=f\left(1\right)+4\left(2^2-1\right)f'\left(1\right)=2+12\cdot\dfrac{3}{4}=11\)
a) f(-2)=2.(-2)+1=-4+1=-3
f(a)=2a+1
b) g(-2)=3.(-2)-2= - 6-2=-8
g(a)=3a-2
k đúng cho mk nha
a) f(-2) = -1; f(-1) = 0; f(0) = 1; f(2) = 3
g(-1) = 0,5; g(-2) = 2; g(0) = 0
b) f(x) = 2 ⇒ x = 1
g(x) = 2 ⇒ x = 2 hoặc x = -2
a,
f(-1)=3*(-1)+1=-2
g(-1)=1-3*(-1)=4
b,
để f(x)=g(x)
thì 3*x+1=1-3*x
=> 3*x+3*x=1-1
6*x=0
x=0/6
x=0
mk chiu mk ms hoc lop 6