K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2021

Bài 1:

a) \(\left|3x-5\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-5=4\\3x-5=-4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{3}\end{matrix}\right.\)

c) \(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)

\(\Leftrightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)

\(\Leftrightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)

\(\Leftrightarrow x=-2004\)( do \(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\ne0\))

Bài 2:

a) \(=\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{4\left(\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}\right)}+\dfrac{3\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}{4\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}\)

\(=\dfrac{1}{4}+\dfrac{3}{4}=1\)

b) \(=-\left(\dfrac{1}{99.100}+\dfrac{1}{98.99}+\dfrac{1}{97.98}+...+\dfrac{1}{2.3}+\dfrac{1}{1.2}\right)\)

\(=-\left(\dfrac{1}{99}-\dfrac{1}{100}+\dfrac{1}{98}-\dfrac{1}{99}+...+1-\dfrac{1}{2}\right)\)

\(=-\left(1-\dfrac{1}{100}\right)=-\dfrac{99}{100}\)

 

18 tháng 9 2021

Bài 1:

a) \(\left|3x-5\right|=4\)  (1)

\(\Leftrightarrow\left[{}\begin{matrix}3x-5=4\\3x-5=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=9\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{3}\end{matrix}\right.\)

b) \(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)

\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)

\(\Leftrightarrow x+1=0\)    \(\left(do\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\ne0\right)\)

\(\Leftrightarrow x=-1\)

c) \(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)

\(\Leftrightarrow\left(\dfrac{x+4}{2000}+1\right)+\left(\dfrac{x+3}{2001}+1\right)=\left(\dfrac{x+2}{2002}+1\right)+\left(\dfrac{x+1}{2003}+1\right)\)

\(\Leftrightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)

\(\Leftrightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)

\(\Leftrightarrow x+2004=0\)           \(\left(do\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\ne0\right)\)

\(\Leftrightarrow x=-2004\)

\(1,\dfrac{4x-3}{x-5}=\dfrac{29}{3}\left(ĐKXĐ:x\ne5\right)\)

\(\Rightarrow3\left(4x-3\right)=29\left(x-5\right)\)

\(\Leftrightarrow12x-9=29x-145\)

\(\Leftrightarrow12x-9-29x+145=0\)

\(\Leftrightarrow-17x+136=0\)

\(\Leftrightarrow-17x=-136\)

\(\Leftrightarrow x=8\left(tm\right)\)

Vậy \(S=\left\{8\right\}\)

 

\(2,\dfrac{2x-1}{5-3x}=2\left(ĐKXĐ:x\ne\dfrac{5}{3}\right)\)

\(\Rightarrow2x-1=2\left(5-3x\right)\)

\(\Leftrightarrow2x-1=10-6x\)

\(\Leftrightarrow2x-1-10+6x=0\)

\(\Leftrightarrow8x-11=0\)

\(\Leftrightarrow8x=11\)

\(\Leftrightarrow x=\dfrac{11}{8}\left(tm\right)\)

Vậy \(S=\left\{\dfrac{11}{8}\right\}\)

 

\(3,\dfrac{4x-5}{x-1}=2+\dfrac{x}{x-1}\left(ĐKXĐ:x\ne1\right)\)

\(\Leftrightarrow\dfrac{4x-5}{x-1}=\dfrac{2\left(x-1\right)}{x-1}+\dfrac{x}{x-1}\)

\(\Leftrightarrow\dfrac{4x-5}{x-1}=\dfrac{2x-2}{x-1}+\dfrac{x}{x-1}\)

\(\Leftrightarrow\dfrac{4x-5}{x-1}=\dfrac{3x-2}{x-1}\)

\(\Rightarrow4x-5=3x-2\)

\(\Leftrightarrow4x-5-3x+2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\left(tm\right)\)

Vậy \(S=\left\{3\right\}\)

 

\(4,\dfrac{2x+5}{2x}-\dfrac{x}{x+5}=0\left(ĐKXĐ:x\ne\dfrac{1}{2};x\ne-5\right)\)

\(\Leftrightarrow\dfrac{\left(2x+5\right)\left(x+5\right)}{2x\left(x+5\right)}-\dfrac{2x^2}{2x\left(x+5\right)}=0\)

\(\Leftrightarrow\dfrac{2x^2+15x+25}{2x\left(x+5\right)}-\dfrac{2x^2}{2x\left(x+5\right)}=0\)

\(\Leftrightarrow\dfrac{15x+25}{2x\left(x+5\right)}=0\)

\(\Rightarrow15x+25=0\)

\(\Leftrightarrow15x=-25\)

\(\Leftrightarrow x=\dfrac{-5}{3}\left(tm\right)\)

Vậy \(S=\left\{\dfrac{-5}{3}\right\}\)

 

 

 

17 tháng 1 2023

\(1,\dfrac{4x-3}{x-5}=\dfrac{29}{3}\)

\(\Leftrightarrow\dfrac{3\left(4x-3\right)-29\left(x-5\right)}{3\left(x-5\right)}=0\)

\(\Leftrightarrow12x-9-29x+145=0\)

\(\Leftrightarrow-17x=-136\)

\(\Leftrightarrow x=8\)

\(2,\dfrac{2x-1}{5-3x}=2\)

\(\Leftrightarrow\dfrac{2x-1-2\left(5-3x\right)}{5-3x}=0\)

\(\Leftrightarrow2x-1-10+6x=0\)

\(\Leftrightarrow8x=11\)

\(\Leftrightarrow x=\dfrac{11}{8}\)

\(3,\dfrac{4x-5}{x-1}=2+\dfrac{x}{x-1}\)

\(\Leftrightarrow\dfrac{4x-5-2\left(x-1-x\right)}{x-1}=0\)

\(\Leftrightarrow4x-5-2x+2+2x=0\)

\(\Leftrightarrow4x=3\)

\(\Leftrightarrow x=\dfrac{3}{4}\)

\(4,\dfrac{2x+5}{2x}-\dfrac{x}{x+5}=0\)

\(\Leftrightarrow\dfrac{\left(2x+5\right)\left(x+5\right)-2x^2}{2x\left(x+5\right)}=0\)

\(\Leftrightarrow2x^2+10x+5x+25-2x^2=0\)

\(\Leftrightarrow15x=-25\)

\(\Leftrightarrow x=-\dfrac{5}{3}\)

27 tháng 2 2019

a) \(\dfrac{15-x}{2000}+\dfrac{14-x}{2001}=\dfrac{13-x}{2002}+\dfrac{12-x}{2003}\)

\(\Leftrightarrow\dfrac{15-x}{2000}+1+\dfrac{14-x}{2001}+1=\dfrac{13-x}{2002}+1+\dfrac{12-x}{2003}+1\)

\(\Leftrightarrow\dfrac{2015-x}{2000}+\dfrac{2015-x}{2001}=\dfrac{2015-x}{2002}+\dfrac{2015-x}{2003}\)

\(\Rightarrow\dfrac{2015-x}{2000}+\dfrac{2015-x}{2001}-\dfrac{2015-x}{2002}-\dfrac{2015-x}{2003}=0\)

\(\Leftrightarrow\left(2015-x\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)

\(\Leftrightarrow2015-x=0\)

<=> x=2015

Vậy phương trình có nghiệm là x=2015

27 tháng 2 2019

b) \(\dfrac{x-5}{2010}+\dfrac{x-4}{2011}=\dfrac{x-2010}{5}+\dfrac{x-2011}{4}\)

\(\Leftrightarrow\dfrac{x-5}{2010}-1+\dfrac{x-4}{2011}-1=\dfrac{x-2010}{5}-1+\dfrac{x-2011}{4}-1\)

\(\Leftrightarrow\dfrac{x-2015}{2010}+\dfrac{x-2015}{2011}=\dfrac{x-2015}{5}+\dfrac{x-2015}{4}\)

\(\Rightarrow\dfrac{x-2015}{2010}+\dfrac{x-2015}{2011}-\dfrac{x-2015}{5}-\dfrac{x-2015}{4}=0\)

\(\Leftrightarrow\left(x-2015\right)\left(\dfrac{1}{2010}+\dfrac{1}{2011}-\dfrac{1}{5}-\dfrac{1}{4}\right)=0\)

\(\Leftrightarrow x-2015=0\)

=> x=2015

Vậy phương trình có nghiệm x=2015

Đặt 1/x=a; 1/y=b

Hệ phương trình trở thành:

\(\left\{{}\begin{matrix}a+b=\dfrac{2}{3}\\\dfrac{1}{4}a+\dfrac{1}{3}b=\dfrac{1}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a+3b=2\\15a+20b=12\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}15b+15b=30\\15b+20b=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-5b=18\\a+b=\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-\dfrac{18}{5}\\a=\dfrac{64}{15}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{18}\\y=\dfrac{15}{64}\end{matrix}\right.\)

30 tháng 3 2017

\(\dfrac{x-4}{2001}\)- 1 +\(\dfrac{x-3}{2002}\)-1 + \(\dfrac{x-2}{2003}\)-1 =\(\dfrac{x-2003}{2}\)-1 + \(\dfrac{x-2002}{3}\)-1 +\(\dfrac{x-2001}{4}\)-1 <=> \(\dfrac{x-2005}{2001}\)+\(\dfrac{x-2005}{2002}\)+\(\dfrac{x-2005}{2003}\)-\(\dfrac{x-2005}{2}\)-\(\dfrac{x-2005}{3}\)-\(\dfrac{x-2005}{4}\)= 0 <=> (x-2005). (\(\dfrac{1}{2001}\)+\(\dfrac{1}{2002}\)+\(\dfrac{1}{2003}\)-\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)) =0 <=> x-2005=0 ( vì \(\dfrac{1}{2001}\) +\(\dfrac{1}{2002}\) +\(\dfrac{1}{2003}\)- \(\dfrac{1}{2}\) -\(\dfrac{1}{3}\)- \(\dfrac{1}{4}\) khác 0) =>x = 2005

30 tháng 3 2017

x-4/2001+ x-3/2002 + x-2/2003= x-2003/2 + x-2002/3 + x-2001/4

<=>(x-4/2001 -1)+(x-3/2002 -1)+(x-2/2003 -1)-(x-2003/2 -1)+

(x-2002/3 -1)+(x-2001/4 -1) =0

<=>x-2005/2001+ x-2005/2002+ x-2005/2003- x-2005/2-

x-2005/3- x-2005/4 =0

<=>(x-2005).(1/2001+1/2002+1/2003- 1/2- 1/3- 1/4)=0

<=>x-2005=0 (vì 1/2001+1/2002+1/2003-1/2-1/3-1/4)

<=>x=2005

Vậy pt có nghiệm là x=2005

25 tháng 6 2023

b=0 nha