Cho 2 số x,y thỏa mãn (2x+1)2 + |y+1.2|=0. Giá trị x+y
(nhập kết quả dưới dạng số thập phân gọn nhất )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\hept{\begin{cases}\left(2x+1\right)^2\ge0\\\left|y-1,2\right|\ge0\end{cases}}\)nên \(\left(2x+1\right)^2+\left|y-1,2\right|=0\)khi và chỉ khi:
\(\hept{\begin{cases}\left(2x+1\right)^2=0\\\left|y-1,2\right|=0\end{cases}\Leftrightarrow}\hept{\begin{cases}2x+1=0\\y-1,2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\y=1,2\end{cases}}\)
=>Giá trị của x+y là: \(-\frac{1}{2}+1,2=0,7\)
Vậy x+y=0,7
Vì \(\left(2x+1\right)^2\ge0;\left|y-1,2\right|\ge0\left(\forall x;y\in Z\right)\)
\(\Rightarrow\left(2x+1\right)^2+\left|y-1,2\right|\ge0\left(\forall x;y\in Z\right)\)
Mà \(\left(2x+1\right)^2+\left|y-1,2\right|=0\)
\(\Rightarrow\hept{\begin{cases}2x+1=0\\y-1,2=0\end{cases}\Rightarrow\hept{\begin{cases}2x=-1\\y=0+1,2\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{-1}{2}\\y=1,2\end{cases}}}\)
\(\Rightarrow x+y=\frac{-1}{2}+1,2=0,7\)
Vì: (2x + 1)2 và |y - 1,2| đều \(\ge\)0 nên (2x + 1)2 + |y - 1,2| \(\ge\)0
Mà: (2x + 1)2 + |y - 1,2| = 0 => 2x + 1 = 0 và y - 1,2 = 0 => x = -0,5 và y = 1,2
=> x + y = (-0,5) + 1,2 = 0,7
Phân số đó là: 0,7
Vì (2x+1)^2 và |y-1,2| đều >= 0 nên (2x+1)^2 + |y-1,2| >= 0
Mà (2x+1)^2 + |y-1,2| = 0 => 2x+1 = 0 và y-1,2 = 0 => x = -0,5 và y=1,2
=> x+y = -0,5 +1,2 = 0,7
k mk nha
(2x+1)*(3x-9/2)=0
=>2x+1=0 hoặc 3x-9/2=0
2x=-1 hoặc 3x=9/2
x=-1/2 hoặc x=3/2