cho a,b,c > 0 và a+b+c =3. chứng minh \(a^5+b^5+c^5+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge6\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho a,b,c la cac so duong a+b+c=3
Chung minh:\(a^5+b^5+c^5+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge6\)
Áp dụng bđt AM-GM:
\(a^5+\frac{1}{a}\ge2\sqrt{a^5.\frac{1}{a}}=2a^2\)
\(b^5+\frac{1}{b}\ge2\sqrt{b^5.\frac{1}{b}}=2b^2\)
\(c^5+\frac{1}{c}\ge2\sqrt{c^5.\frac{1}{c}}=2c^2\)
\(\Rightarrow VT\ge2\left(a^2+b^2+c^2\right)\ge\frac{2}{3}\left(a+b+c\right)^2=6\)
\("="\Leftrightarrow a=b=c=1\)
Ta có \(\frac{b+c+6}{1+a}=\frac{11-a}{1+a}=-1+\frac{12}{1+a}\)
\(\frac{c+a+4}{2+b}=-1+\frac{12}{2+b}\)
\(\frac{a+b+3}{3+c}=-1+\frac{12}{3+c}\)
Mà \(\frac{1}{1+a}+\frac{1}{2+b}+\frac{1}{3+c}\ge\)
\(\frac{3^2}{1+2+3+a+b+c}=\frac{3}{4}\)
Từ đó => VT \(\ge\)-3 + \(12\frac{3}{4}\)= 6
Đặt x=a+1; y=b+2; z=3+c (x;y;z>0)
\(VT=\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}\)
\(=\frac{y}{x}+\frac{x}{y}+\frac{x}{z}+\frac{z}{x}+\frac{y}{z}+\frac{z}{y}\)
\(\ge2\sqrt{\frac{y}{x}\cdot\frac{x}{y}}+2\sqrt{\frac{z}{x}\cdot\frac{x}{z}}+2\sqrt{\frac{y}{z}\cdot\frac{z}{y}}=6\)
Dấu "=" xảy ra <=> a=3; b=2; c=1
Ta chứng minh BĐT sau với các số dương:
\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
Thật vậy, BĐT tương đương: \(\dfrac{x+y}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)
Áp dụng:
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) ; \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c}\) ; \(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{c+a}\)
Cộng vế với vế:
\(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\dfrac{4}{a+b}+\dfrac{4}{b+c}+\dfrac{4}{c+a}\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\)
b.
Ta có:
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\Rightarrow\dfrac{3}{a}+\dfrac{3}{b}\ge\dfrac{12}{a+b}\) (1)
\(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c}\Rightarrow\dfrac{2}{b}+\dfrac{2}{c}\ge\dfrac{8}{b+c}\) (2)
\(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{c+a}\) (3)
Cộng vế với vế (1); (2) và (3):
\(\dfrac{4}{a}+\dfrac{5}{b}+\dfrac{3}{c}\ge4\left(\dfrac{3}{a+b}+\dfrac{2}{b+c}+\dfrac{1}{c+a}\right)\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
bài 2
(bài này là đề thi olympic Toán,Ireland 1997),nhưng cũng dễ thôi
Giả sử ngược lại \(a^2+b^2+c^2< abc\)
khi đó \(abc>a^2+b^2+c^2>a^2\)nên \(a< bc\)
Tương tự \(b< ac,c< ab\)
Từ đó suy ra :\(a+b+c< ab+bc+ac\left(1\right)\)
mặt khác ta lại có:\(a^2+b^2+c^2\ge ab+bc+ac\)nên
\(abc>a^2+b^2+c^2\ge ab+bc+ac\)
\(\Rightarrow abc>ab+ac+bc\left(2\right)\)
Từ (1),(2) ta có\(abc>a+b+c\)(trái với giả thuyết)
Vậy bài toán được chứng minh
3)để đơn giản ta đặt \(x=\frac{1}{a},y=\frac{1}{b},z=\frac{1}{c}\).Khi đó \(x,y,z>0\)
và \(xy+yz+xz\ge1\)
ta phải chứng minh có ít nhất hai trong ba bất đẳng thức sau đúng
\(2x+3y+6z\ge6,2y+3z+6x\ge6,2z+3x+6y\ge6\)
Giả sử khẳng định này sai,tức là có ít nhất hai trong ba bất đẳng thức trên sai.Không mất tính tổng quát,ta giả sử
\(2x+3y+6z< 6\)và \(2y+3z+6x< 6\)
Cộng hai bất đẳng thức này lại,ta được:\(8x+5y+9z< 12\)
Từ giả thiết \(xy+yz+xz\ge1\Rightarrow x\left(y+z\right)\ge1-yz\)
\(\Rightarrow x\ge\frac{1-yz}{y+z}\)Do đó
\(8\frac{1-yz}{y+z}+5y+9z< 12\Leftrightarrow8\left(1-yz\right)+\left(5y+9z\right)\left(y+z\right)< 12\left(y+z\right)\)
\(\Leftrightarrow5y^2+6yz+9z^2-12y-12z+8< 0\)
\(\Leftrightarrow\left(y+3z-2\right)^2+4\left(y-1\right)^2< 0\)(vô lý)
mâu thuẫn này chứng tỏ khẳng định bài toán đúng.Phép chứng minh hoàn tất.
Áp dụng BĐT cosi ta có
\(\frac{1}{a^3}+\frac{1}{a^3}+\frac{1}{b^3}\ge\frac{3}{a^2b}\); \(\frac{1}{b^3}+\frac{1}{b^3}+\frac{1}{c^3}\ge\frac{3}{b^2c}\); \(\frac{1}{c^3}+\frac{1}{c^3}+\frac{1}{d^3}\ge\frac{3}{c^2d}\)
\(\frac{1}{d^3}+\frac{1}{d^3}+\frac{1}{a^3}\ge\frac{3}{d^2a}\)
Cộng các BĐt trên ta có
\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\ge\frac{1}{a^2b}+\frac{1}{b^2c}+\frac{1}{c^2d}+\frac{1}{d^2a}\)(1)
Áp dụng BĐT buniacoxki ta có
\(\left(\frac{a^2}{b^5}+\frac{b^2}{c^5}+\frac{c^2}{d^5}+\frac{d^2}{a^5}\right)\left(\frac{1}{a^2b}+\frac{1}{b^2c}+\frac{1}{c^2d}+\frac{1}{d^2a}\right)\ge \left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\right)^2\)
Kết hợp với (1) ta được ĐPCM
Dấu bằng xảy ra khi a=b=c
áp dụng Cô-si ta có:
\(a^5+\frac{1}{a}+1+1\ge4\sqrt[4]{a^5.\frac{1}{a}.1.1}=4a\)
\(b^5+\frac{1}{b}+1+1\ge4\sqrt[4]{b^5.\frac{1}{b}.1.1}=4b\)
\(c^5+\frac{1}{c}+1+1\ge4\sqrt[4]{c^5.\frac{1}{c}.1.1}=4c\)
\(\Rightarrow a^5+b^5+c^5+1+1+1+1+1+1\ge4a+4b+4c\)
\(\Leftrightarrow a^5+b^5+c^5\ge4\left(a+b+c\right)-6=4.3-6=6\)
Dấu = xảy ra khi a=b=c=1
Vẫn áp dụng cô si nhưng lần này sẽ khác cách của Thành:
Áp dụng BĐT Côsi,ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)
Suy ra \(VT\ge a^5+b^5+c^5+3\sqrt[3]{\frac{1}{abc}}\)
Suy ra \(VT+1+1\ge a^5+b^5+c^5+1+1+3\sqrt[3]{\frac{1}{abc}}\) (1)
Áp dụng Côsi,ta có: \(a^5+b^5+c^5+1+1\ge5\sqrt[5]{1a^5b^5c^51}=5abc\)(2)
Từ (1) và (2) suy ra \(VT+1+1\ge5abc+3\sqrt[3]{\frac{1}{abc}}\)
\(VT\ge5abc+3\sqrt[3]{\frac{1}{abc}}-2\).Ta cần chứng minh \(5abc+3\sqrt[3]{\frac{1}{abc}}-2\ge6\Leftrightarrow5abc+3\sqrt[3]{\frac{1}{abc}}\ge8\) (3)
Thật vậy ta có: \(\sqrt[3]{abc}\le\frac{a+b+c}{3}\Rightarrow abc\ge\frac{a+b+c}{3}\).Áp dụng vào,ta có:
\(abc\ge\frac{a+b+c}{3}=1\) (do a + b + c = 3).
Thay vào (3),ta có:\(5abc+3\sqrt[3]{\frac{1}{abc}}\ge8\) suy ra \(5abc+3\sqrt[3]{\frac{1}{abc}}-2\ge6\) suy ra đpcm