K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2022

a) Ta có \(\sqrt{x-4\sqrt{x-4}}=\sqrt{\left(x-4\right)-4\sqrt{x-4}+4}\) \(=\sqrt{\left(\sqrt{x-4}-2\right)^2}=\left|\sqrt{x-4}-2\right|\) 

b) Ta có \(\sqrt{x-2+2\sqrt{x-3}}=\sqrt{\left(x-3\right)+2\sqrt{x-3}+1}\) \(=\sqrt{\left(\sqrt{x-3}+1\right)^2}=\sqrt{x-3}+1\) (vì \(\sqrt{x-3}+1>0\) với \(x\ge3\))

c) Ta có \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\) \(=\sqrt{\left(x-1\right)+2\sqrt{x-1}+1}+\sqrt{\left(x-1\right)-2\sqrt{x-1}+1}\)\(=\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}\) \(=\sqrt{x-1}+1+\left|\sqrt{x-1}-1\right|\)

d) Ta có \(\sqrt{x-2\sqrt{x}+1}+\sqrt{x+2\sqrt{x}+1}\) \(=\sqrt{\left(\sqrt{x}-1\right)^2}+\sqrt{\left(\sqrt{x}+1\right)^2}\) \(=\left|\sqrt{x}-1\right|+\sqrt{x}+1\)

10 tháng 4 2021

a, Để A nhận giá trị dương thì \(A>0\)hay \(x-1>0\Leftrightarrow x>1\)

b, \(B=2\sqrt{2^2.5}-3\sqrt{3^2.5}+4\sqrt{4^2.5}\)

\(=4\sqrt{5}-9\sqrt{5}+16\sqrt{5}=\left(4-9+16\right)\sqrt{5}=11\sqrt{5}\)

( theo công thức \(A\sqrt{B}=\sqrt{A^2B}\))

c, Với \(a\ge0;a\ne1\)

\(C=\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2\)

\(=\left(\frac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right)^2\)

\(=\left(\sqrt{a}+1\right)^2.\frac{1}{\left(\sqrt{a}+1\right)^2}=1\)

16 tháng 10 2021

a: Ta có: \(x=\sqrt{28-16\sqrt{3}}+2\sqrt{3}\)

\(=4-2\sqrt{3}+2\sqrt{3}\)

=4

Thay x=4 vào B, ta được:

\(B=\dfrac{2-4}{2}=-1\)

a: Sửa đề: \(B=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)

Khi x=9 thì \(B=\dfrac{\sqrt{9}+1}{\sqrt{9}+2}\)

\(=\dfrac{3+1}{3+2}=\dfrac{4}{5}\)

b: \(A=\dfrac{\sqrt{x}-3}{\sqrt{x}+2}+\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{6+\sqrt{x}}{x-4}\)

\(=\dfrac{\sqrt{x}-3}{\sqrt{x}+2}+\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{\sqrt{x}+6}{\left(\sqrt{x}-2\right)\cdot\left(\sqrt{x}+2\right)}\)

\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)+\sqrt{x}\left(\sqrt{x}+2\right)-\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{x-5\sqrt{x}+6+x+2\sqrt{x}-\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{2x-4\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{2\sqrt{x}}{\sqrt{x}+2}\)

c: P=A/B

\(=\dfrac{2\sqrt{x}}{\sqrt{x}+2}:\dfrac{\sqrt{x}+1}{\sqrt{x}+2}=\dfrac{2\sqrt{x}}{\sqrt{x}+1}\)

\(P-2=\dfrac{2\sqrt{x}}{\sqrt{x}+1}-2=\dfrac{2\sqrt{x}-2\sqrt{x}-2}{\sqrt{x}+1}\)

\(=\dfrac{-2}{\sqrt{x}+1}< 0\)

=>P<2

7 tháng 3 2021

a ĐKXĐ: \(x>0;x\ne4\)

\(\Rightarrow P=\left(\dfrac{\sqrt{x}-2}{\sqrt{x}+2}-\dfrac{\sqrt{x}}{\sqrt{x}+2}\right):\left(\dfrac{2}{x-4}+\dfrac{1}{\sqrt{x}+2}\right)=\left(\dfrac{\sqrt{x}-2-\sqrt{x}}{\sqrt{x}+2}\right):\left(\dfrac{2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{1}{\sqrt{x}+2}\right)=\dfrac{-2}{\sqrt{x}+2}:\left(\dfrac{2+\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)=-\dfrac{2}{\sqrt{x}+2}:\dfrac{\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=-\dfrac{2\left(\sqrt{x-2}\right)}{\sqrt{x}}=\dfrac{4-2\sqrt{x}}{\sqrt{x}}\)  b. Vì P và x cùng dấu \(\Rightarrow P>0\Rightarrow\dfrac{4-2\sqrt{x}}{\sqrt{x}}>0\Rightarrow4-2\sqrt{x}>0\) (vì \(\sqrt{x}>0\) ) \(\Rightarrow-2\sqrt{x}>-4\Rightarrow\sqrt{x}< 2\Rightarrow x< 4\) kết  hợp với điều kiện

\(\Rightarrow0< x< 4\)

11 tháng 9 2016

\(A=x-\sqrt{x^2+2x+1}\)

\(=x-x-1\)

\(=-1\)

11 tháng 9 2016
Bài giải bị thiếu rồi
5 tháng 8 2023

a) Thay x=25 vào B ta có:

\(B=\dfrac{\sqrt{25}+2}{\sqrt{25}-2}=\dfrac{7}{3}\)

b) \(A=\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{2\sqrt{x}-1}{x-5\sqrt{x}+6}\)

\(A=\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{2\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(A=\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}+\dfrac{2\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(A=\dfrac{x-9-x+4+2\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(A=\dfrac{2\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(A=\dfrac{2\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(A=\dfrac{2}{\sqrt{x}-2}\)

c) Ta có: \(A>B\) Khi:

\(\dfrac{2}{\sqrt{x}-2}>\dfrac{\sqrt{x}+2}{\sqrt{x}-2}\)

\(\Leftrightarrow\dfrac{2}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-2}>0\)

\(\Leftrightarrow\dfrac{2-\sqrt{x}-2}{\sqrt{x}-2}>0\)

\(\Leftrightarrow\dfrac{-\sqrt{x}}{\sqrt{x}-2}>0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}-\sqrt{x}< 0\\\sqrt{x}-2< 0\end{matrix}\right.\\\left\{{}\begin{matrix}-\sqrt{x}>0\\\sqrt{x}-2>0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}x>0\\x< 4\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x>4\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow0< x< 4\) 

8 tháng 11 2023

a) \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{\sqrt{x}-4}{x-1}\right)\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\left(dkxd:x\ge0;x\ne1;x\ne4\right)\)

\(=\left[\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\)

\(=\dfrac{x-\sqrt{x}+\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\)

\(=\dfrac{x-4}{\sqrt{x}-1}\cdot\dfrac{1}{\sqrt{x}-2}\)

\(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\)

b) Với \(x\ge0;x\ne1;x\ne4\):

Thay \(x=3+2\sqrt{2}\) vào \(P\), ta được:

\(P=\dfrac{\sqrt{3+2\sqrt{2}}+2}{\sqrt{3+2\sqrt{2}}-1}\)

\(=\dfrac{\sqrt{\left(\sqrt{2}\right)^2+2\cdot\sqrt{2}\cdot1+1^2}+2}{\sqrt{\left(\sqrt{2}\right)^2+2\cdot\sqrt{2}\cdot1+1^2}-1}\)

\(=\dfrac{\sqrt{\left(\sqrt{2}+1\right)^2}+2}{\sqrt{\left(\sqrt{2}+1\right)^2}-1}\)

\(=\dfrac{\sqrt{2}+1+2}{\sqrt{2}+1-1}\)

\(=\dfrac{\sqrt{2}+3}{\sqrt{2}}\)

\(=\dfrac{2+3\sqrt{2}}{2}\)

c) Với \(x\ge0;x\ne1;x\ne4\),

\(P=\dfrac{\sqrt{x}+2}{\sqrt{x}-1}=\dfrac{\sqrt{x}-1+3}{\sqrt{x}-1}=1+\dfrac{3}{\sqrt{x}-1}\)

Để \(P\) có giá trị nguyên thì \(\dfrac{3}{\sqrt{x}-1}\) có giá trị nguyên

\(\Rightarrow 3\vdots\sqrt x-1\\\Rightarrow \sqrt x-1\in Ư(3)\)

\(\Rightarrow\sqrt{x}-1\in\left\{1;3;-1;-3\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{2;4;0;-2\right\}\) mà \(\sqrt{x}\ge0\)

\(\Rightarrow\sqrt{x}\in\left\{2;4;0\right\}\)

\(\Rightarrow x\in\left\{4;16;0\right\}\)

Kết hợp với ĐKXĐ của \(x\), ta được:

\(x\in\left\{0;16\right\}\)

Vậy: ...

\(\text{#}Toru\)

a: \(B=\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{2\sqrt{x}+1}{x+\sqrt{x}}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-1+2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)

c: A/B>4/3

=>\(\dfrac{\sqrt{x}+2}{\sqrt{x}}:\dfrac{\sqrt{x}+2}{\sqrt{x}+1}>\dfrac{4}{3}\)

=>\(\dfrac{\sqrt{x}+1}{\sqrt{x}}-\dfrac{4}{3}>0\)

=>\(\dfrac{3\left(\sqrt{x}+1\right)-4\sqrt{x}}{3\sqrt{x}}>0\)

=>\(3\left(\sqrt{x}+1\right)-4\sqrt{x}>0\)

=>\(3\sqrt{x}+3-4\sqrt{x}>0\)

=>\(-\sqrt{x}>-3\)

=>\(\sqrt{x}< 3\)

=>0<=x<9

Kết hợp ĐKXĐ, ta được: 0<x<9