cho x+y+z=0 và xyz\(\ne\)0.tính :P=\(\frac{1}{y^2+z^2-x^2}+\frac{1}{x^2+y^2-z^2}+\frac{1}{x^2+z^2-y^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tự chứng minh x3 +y3 +z3= 3xyz.
Từ x +y +z =0 => \(\hept{\begin{cases}y+z=-x\\x+z=-y\\x+y=-z\end{cases}}\)
Xét: \(\frac{x^2}{y^2+z^2-x^2}\)=\(\frac{x^2}{\left(y+z\right)^2-2yz-x^2}\)=\(\frac{x^2}{x^2-2yz-x^2}\)=\(\frac{x^2}{-2yz}\)
Tương tự ta có \(\frac{y^2}{x^2+z^2-y^2}\)=\(\frac{y^2}{-2xz}\); \(\frac{z^2}{x^2+y^2-z^2}\)=\(\frac{z^2}{-2xy}\)
=> P= \(\frac{x^2}{-2xy}-\frac{y^2}{2xz}-\frac{z^2}{2xy}\)=\(\frac{x^3}{-2xyz}-\frac{y^3}{2xyz}-\frac{z^3}{2xyz}\)=\(\frac{1}{-2xyz}\left(x^3+y^3+z^3\right)\)=\(\frac{3xyz}{-2xyz}=\frac{-3}{2}\)
Tui mới lớp 8 cũng làm đc nhá!!!
Ta có: \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{xz}+\frac{1}{yz}\right)\)
\(\left(\sqrt{3}\right)^2=P+\frac{2\left(z+y+x\right)}{xyz}\)
Mà x+y+z=xyz
=> P+2=3=>P=1
Vậy P=1
\(y^2+z^2-x^2=y^2+\left(z-x\right)\left(z+x\right)=y^2+y\left(x-z\right)=y\left(x+y-z\right)=-2yz\)
\(\Rightarrow P=-\frac{1}{2}\left(\frac{x^2}{yz}+\frac{y^2}{zx}+\frac{z^2}{xy}\right)=-\frac{1}{2}\left(\frac{x^3+y^3+z^3}{xyz}\right)\)
Mặt khác \(x^3+y^3+z^3=x^3+y^3+3xy\left(x+y\right)+z^3-3xy\left(x+y\right)\)
\(=\left(x+y\right)^3+z^3-3xy\left(-z\right)=\left(x+y\right)^3+\left(-x-y\right)^3+3xyz=3xyz\)
\(\Rightarrow P=-\frac{1}{2}\left(\frac{3xyz}{xyz}\right)=-\frac{3}{2}\)
Cậu vào phần thống kê câu trả lời của mk ấy, ngay câu đầu tiên
tham khảo nha: Câu hỏi của Nguyễn Thị Phương Thảo - Toán lớp 8 - Học toán với OnlineMath
Ta có: x + y + z = 0
=> x = -y - z
=> x2 = (-y - z)2
=> x2 = y2 + 2yz + z2
=> x2 - y2 - z2 = 2yz
CMTT: y2 = x2 + 2xz + z2 => y2 - z2 - x2 = 2xz
z2 = x2 + 2xy + y2 => z2 - x2 - y2 = 2xy
Khi đó, ta có:M = \(\frac{x^2}{2yz}+\frac{y^2}{2xz}+\frac{z^2}{2xy}\)
M = \(\frac{x^3+y^3+z^3}{2xyz}\)
M = \(\frac{\left(x+y\right)\left(x^2-xy+y^2\right)+z^3}{2xyz}\)
M = \(\frac{\left(x+y\right)\left(x^2+2xy+y^2\right)-3xy\left(x+y\right)+z^3}{2xyz}\)
M = \(\frac{\left(x+y\right)^3+z^3-3xy\left(x+y\right)}{2xyz}\)
M = \(\frac{\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right).z+x^2\right]-3xy\left(x+y\right)}{2xyz}\)(do x + y + z = 0)
M = \(\frac{-3xy.z}{2xyz}=-\frac{3}{2}\) (do x + y = -z)
Sửa lại kq M = 3/2 (thay dòng cuối) (-3xy.z --> -3xy(-z)) n/b
x + y + z = 0 \(\Leftrightarrow\)\(\hept{\begin{cases}y+z=-x\\x+y=-z\\x+z=-y\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}(y+z)^2=(-x)^2\\(x+y)^2=(-z)^2\\(x+z)^2=(-y)^2\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y^2+2yz+z^2=x^2\\x^2+2xy+y^2=z^2\\x^2+2xz+z^2=y^2\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y^2+z^2-x^2=-2yz\\x^2+y^2-z^2=-2xy\\x^2+z^2-y^2=-2xz\end{cases}}\)
Thay vào P ta được:
P=\(\frac{1}{-2yz}\)\(+\)\(\frac{1}{-2xy}\)\(+\)\(\frac{1}{-2xz}\)\(=\)\(\frac{-x}{2xyz}\)\(+\)\(\frac{-z}{2xyz}\)\(+\)\(\frac{-y}{2xyz}\)\(=\)\(\frac{-(x+y+z)}{2xyz}\)\(=\)0 \((x+y+z=0)\)
Vậy với \(x+y+z=0\)và \(xyz\ne0\)thì \(P=0\)