Cho tam giác ABC có số đo các góc A, B ,C lần lượt tỉ lệ nghịch với 1/2, 1/3, 2/5. Tính số đo các góc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
Gọi số đo của ba góc A, B, C lần lượt là x, y, z
Mà số đo của các góc lần lượt tỉ lệ với \(\frac{1}{2};\frac{1}{3};\frac{2}{5}\)
=> \(x.\frac{1}{2}.\frac{1}{30}\)= \(x.\frac{1}{3}.\frac{1}{30}\)=\(x.\frac{2}{5}.\frac{1}{30}\)
=> \(\frac{x}{60}\)= \(\frac{y}{90}\)= \(\frac{z}{75}\)
Vì theo định lí, tổng ba góc của tam giác là 180o
=> x + y + z = 180o
Áp dụng tính chất dãy tỉ số bằng nhau:
Ta có: \(\frac{x}{60}=\frac{y}{90}=\frac{z}{75}=\frac{x+y+z}{60+90+75}=\frac{180}{225}=\frac{36}{45}=\frac{4}{5}\)
Do đó: \(\hept{\begin{cases}\frac{x}{60}=\frac{4}{5}\\\frac{y}{90}=\frac{4}{5}\\\frac{z}{75}=\frac{4}{5}\end{cases}}\Rightarrow\hept{\begin{cases}x=48\\y=72\\z=60\end{cases}}\)
Vậy độ dài của góc A là 48o
độ dài của góc B là 72o
độ dài của góc C là 60o
# Chúc bạn học tốt #
-tổng 3 góc của 1 tam giác=180
-gọi ^A,^B,^C lần lượt là x,y,z
-áp dụng tính chất dãy tỉ số bằng nhau:
x/1=y/2=z/3=x+y+z/1+2+3=180/6=30
suy ra:x/1=30 suy ra x=30
suy ra:y/2=30 suy ra y=60
suy ra:z/3=30 suy ra z=90
suy ra ^A=30o;^B=60o;^C=90o
Theo bài toán ta có:
\(\dfrac{A}{1}\)\(=\)\(\dfrac{B}{2}\)\(=\)\(\dfrac{C}{3}\) và A\(+\)B\(+\)C\(=\)180°(vì tổng ba góc của một tam giác bằng 180°)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{A}{1}\)\(+\)\(\dfrac{B}{2}\)\(+\)\(\dfrac{C}{2}\)\(=\dfrac{A+B+C}{1+2+3}\)\(=\)\(\dfrac{180}{6}\)\(=\)30°
\(\Rightarrow\)\(\dfrac{A}{1}\)\(=\)30°. 1\(=\) 30°
\(\dfrac{B}{2}\)\(=\) 30°. 2\(=\) 60°
\(\dfrac{C}{3}\)\(=\)30°. 3\(=\)90°
Vậy số đo của ba góc A, B, C lần lượt là 30°, 60° và 90°
`a,` Gọi số đo `3` góc của Tam giác `ABC` lần lượt là `x,y,z (x,y,z \ne 0)`
Tỉ lệ thức biểu diễn mối quan hệ giữa số đo `3` góc trong Tam giác `ABC` là `x/2=y/3=z/4`
`b,` Tổng số đo `3` góc trong `1` tam giác là `180^0`
`-> x+y+z=180`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/2=y/3=z/4=(x+y+z)/(2+3+4)=180/9=20`
`-> x/2=y/3=z/4=20`
`->x=20*2=40, y=20*3=60, z=20*4=80`
Vậy, số đo của `3` góc trong Tam giác `ABC` lần lượt là `40^0, 60^0, 80^0.`
a:
Đặt \(a=\widehat{A};b=\widehat{B};c=\widehat{C}\)
a/2=b/3=c/4
b: a/2=b/3=c/4=(a+b+c)/(2+3+4)=180/9=20
=>a=40; b=60; c=80
1/Tính
\(\left(\frac{3}{7}\right)^{20}:\left(\frac{9}{49}\right)^5\)
\(=\left(\frac{3}{7}\right)^{20}:\left(\frac{3^2}{7^2}\right)^5\)
\(=\left(\frac{3}{7}\right)^{20}:\left(\frac{3}{7}\right)^{10}\)
\(=\left(\frac{3}{7}\right)^{10}\)
2/ Ta có:A+B+C = 180 độ ( tổng 3 góc tam giác)
Và : \(A.\frac{1}{2}=B.\frac{1}{3}=C.\frac{2}{5}\)
hay \(\frac{A}{\frac{2}{1}}=\frac{B}{\frac{3}{1}}=\frac{C}{\frac{5}{2}}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{A}{\frac{2}{1}}=\frac{B}{\frac{3}{1}}=\frac{C}{\frac{5}{2}}=\frac{A+B+C}{\frac{2}{1}+\frac{3}{1}+\frac{5}{2}}=\frac{180}{\frac{15}{2}}=24\)
=> \(A=24.\frac{2}{1}=48\)độ
\(B=24.\frac{3}{1}=72\)độ
\(C=24.\frac{5}{2}=60\)độ