cho a, b là hai số tự nhiên, chứng minh rằng
a) nếu ab=0 thì a=0 hoặc b=0
b) nếu ab=1 thì a=1 và b=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương.
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết
Vậy nên phải có ít nhất 1 số dương
Không mất tính tổng quát, giả sử a > 0
mà abc > 0 => bc > 0
Nếu b < 0, c < 0:
=> b + c < 0
Từ gt: a + b + c < 0
=> b + c > - a
=> (b + c)^2 < -a(b + c) (vì b + c < 0)
<=> b^2 + 2bc + c^2 < -ab - ac
<=> ab + bc + ca < -b^2 - bc - c^2
<=> ab + bc + ca < - (b^2 + bc + c^2)
ta có:
b^2 + c^2 >= 0
mà bc > 0 => b^2 + bc + c^2 > 0
=> - (b^2 + bc + c^2) < 0
=> ab + bc + ca < 0 (vô lý)
trái gt: ab + bc + ca > 0
Vậy b > 0 và c >0
=> cả 3 số a, b, c > 0
1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)
\(\left(b+c\right)^2\ge4b>0\)
\(\left(a+c\right)^2\ge4c>0\)
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)
Mà abc=1
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)
Gỉa sử a chia hết cho 5
ta có ab(a+b)= a.a.b+a.b.b
vì a chia hết cho 5 nên a.a.b và a.b.b chia hết cho 5
=>a.a.b và a.b.b có tận cùng là 5 =>:a.a.b+a.b.b có tận cùng là 0
=>ab(a+b) có tận cùng là 0
Trường hợp số chia hết cho 5 tận cùng là 0, thì ab(a+b) chắc chắn tận cùng là 0.
Trường hợp số chia hết cho 5 tận cùng là 5 cũng có nghĩa số đó là số lẻ, nếu một số tận cùng là 5 thì khi nhân với một số chẵn thì nó chia hết cho 10(tận cùng là 0)
Trong trường hợp này nếu số còn lại là số chẵn thì tích của nó với số chia hết cho 5 chia hết cho 10, nếu đó là số lẽ thì tổng của nó với 5 là số chẵn lúc đó tích của nó với 5 cũng sẽ chia hết cho 10.
Vậy....
a) a và b là 2 số tự nhiên ⇒ a, b ≥ 0
nếu a>0, b>0 ⇒a+b>0
nếu a>0, b=0 ⇒a+b>0
nếu a=0, b>0 ⇒a+b>0
nếu a=0, b=0 ⇒a+b=0
⇒ a+b=0 khi và chỉ khi a = b = 0
b) a và b là 2 số tự nhiên ⇒ a, b ≥ 0
nếu a>0, b>0 ⇒ ab>0
nếu a=0, b>0 ⇒ ab=0
nếu a>0, b=0 ⇒ ab=0
Vậy ab = 0 khi và chỉ khi a = 0 hoặc b = 0
Bài này giải bằng quy nạp
Mình ko có thời gian nên nói cách làm thôi
Đặt tích: \(\left(16a+17b\right)\left(17a+16b\right)=P\)
\(P=\left[11\left(2a+b\right)-6\left(a-b\right)\right]\cdot\left[11\left(2a+b\right)-5\left(a-b\right)\right]\)
P chia hết cho 11 thì
Vậy, P luôn có ít nhất 1 ước chính phương (khác 1) là 112. ĐPCM