Bài 1: Tìm giá trị nhỏ nhất của
A, x2 + 8x + 17
B, x2 - x + 4
Mn giúp mik với mik đag cần gấp ạ mik c.ơn mn nhiều ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{n-3}{n+2}=1-\dfrac{5}{n+2}\)
TH1 : n >=-1 => n+2>=1 >0
\(\Rightarrow A\ge1-\dfrac{5}{1}=-4\)
Dấu = khi n=-1
TH2: n<= -3 => n+2<=-1 <0
\(\Rightarrow A\le1-\dfrac{5}{-1}=6\)
Dấu = xảy ra khi n=-3
Cảm ơn vì bn đã giúp. Nhưng bn có thể giải chi tiết cho mik đc ko ạ?
a. f(\(\dfrac{-1}{2}\)) = \(4.\left(\dfrac{-1}{2}\right)^2+3.\left(\dfrac{-1}{2}\right)-2\)
= \(4.\dfrac{1}{4}-\left(\dfrac{-3}{2}\right)-\dfrac{4}{2}\)
= \(\dfrac{2}{2}+\dfrac{3}{2}-\dfrac{4}{2}\)
= \(\dfrac{1}{2}\)
a: \(M=2x^2-4x+3\)
\(=2x^2-4x+2+1\)
\(=2\left(x^2-2x+1\right)+1\)
\(=2\left(x-1\right)^2+1>=1\forall x\)
Dấu '=' xảy ra khi x-1=0
=>x=1
b: \(N=x^2-4x+5+y^2+2y^2\)
\(=x^2-4x+4+3y^2+1\)
\(=\left(x-2\right)^2+3y^2+1>=1\forall x,y\)
Dấu '=' xảy ra khi x-2=0 và y=0
=>x=2 và y=0
Bài 8:
\(F=x^2-2x+1+x^2-6x+9=2x^2-8x+10\\ F=2\left(x^2-4x+4\right)+2=2\left(x-2\right)^2+2\ge2\\ F_{min}=2\Leftrightarrow x=2\)
Bài 9:
\(A=-x^2+2x-1+5=-\left(x-1\right)^2+5\le5\\ A_{max}=5\Leftrightarrow x=1\\ B=-x^2+10x-25+2=-\left(x-5\right)^2+2\le2\\ B_{max}=2\Leftrightarrow x=5\\ C=-x^2+6x-9+9=-\left(x-3\right)^2+9\le9\\ C_{max}=9\Leftrightarrow x=3\)
\(\left(2x-15\right)^5=\left(2x-15\right)^3\)
\(\Rightarrow\left(2x-15\right)^5-\left(2x-15\right)^3=0\)
\(\Rightarrow\left(2x-15\right)^3\left[\left(2x-15\right)^2-1\right]=0\)
\(\Rightarrow\left(2x-15\right)^3\left(2x-15-1\right)\left(2x-15+1\right)=0\)
\(\Rightarrow\left(2x-15\right)^3\left(2x-16\right)\left(2x-14\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-15=0\\2x-16=0\\2x-14=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=15\\2x=16\\2x=14\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{15}{2}\\x=8\\x=7\end{matrix}\right.\)
`a)A=x^2+8x+17=x^2+8x+16+1=(x+4)^2+1`
Vì \((x+4)^2 \ge 0 \forall x\)
\(<=>(x+4)^2+1 \ge 1 \forall x\)
Hay \(A \ge 1 \forall x\)
Dấu "`=`" xảy ra `<=>(x+4)^2=0<=>x=-4`
___________________________________________________
\(b)B=x^2-x+4=x^2-2.x. \dfrac{1}{2}+\dfrac{1}{4}+\dfrac{15}{4}=(x+\dfrac{1}{2})^2+\dfrac{15}{4}\)
Vì \((x+\dfrac{1}{2})^2 \ge 0 \forall x<=>(x+\dfrac{1}{2})^2+\dfrac{15}{4} \ge \dfrac{15}{4} \forall x\)
Hay \(B \ge \dfrac{15}{4} \forall x\)
Dấu "`=`" xảy ra \(<=>(x+\dfrac{1}{2})^2=0<=>x=-\dfrac{1}{2}\)