1. Cho các số \(a,b,c\)dương thỏa mãn \(ab+ac+bc=1\)
CMR : P= \(\frac{2a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\le\frac{9}{4}\)
2. Cho x,y,z là các số thực dương thỏa mãn xyz=1
Tìm GTLN của biểu thức \(A=\frac{1}{x^3+y^3+1}+\frac{1}{z^3+y^3+1}+\frac{1}{z^3+x^3+1}\)
3. Giải pt
a) \(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
b)\(CM:\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)
c) Cho đường thẳng y= (m-2)x + 2 (d). CMR đg thẳng (d) luôn đi qua 1 điểm cố định với mọi giá trị của m
4. Cho x,y là các số dương
a) CM \(\frac{x}{y}+\frac{y}{x}\ge2\)
b) Tìm Min M = \(\frac{x}{y}+\frac{y}{x}+\frac{xy}{x^2+y^2}\)
4a) Sử dụng bất đẳng thức AM-GM ta có :
\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}\times\frac{y}{x}}=2\)
Đẳng thức xảy ra khi x = y > 0