K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2015

Tích 1 : (a + b) . (a + b) = a . (a + b) + b . (a + b) = a2 + ab + ba + b2 = a2 + b2 + 2ab

Tích 2 : (a - b)2 = (a - b) . (a - b) = a . (a - b) - b . (a - b) = a2 - ab - ba - b2 = a2 - b2 = a2 + (-b2)

Tích 3 : (a + b) . (a - b) = a . (a - b) + b . (a - b) = a2 - ab + ba - b2 = a2 + b2

             Làm tạm 3 tích đã tý làm nốt !

30 tháng 7 2020

ngu lồn

Cái này lên lớp 8 mới hok nhưng bạn chịu khó hiểu nha :

 \(\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(=a^3-a^2b+ab^2+a^2b-ab^2+b^3\)

Ta thấy dấu - vs dấu + triệt tiêu nha còn :

\(=a^3+b^3\)

Thế là xong 

Ủng hộ mik nha 

Thnaks

1 tháng 7 2016

k còn cách khác s

1 tháng 6 2015

\(\left(a-b\right)^2=\left(a-b\right)\left(a-b\right)=\left(a-b\right).a-\left(a-b\right).b=a^2-ab-\left(ab-b^2\right)=a^2-ab-ab+b^2=a^2-2.ab+b^2\)

\(\left(a-b\right)^3=\left(a-b\right)^2.\left(a-b\right)=\left(a^2-2.ab+b^2\right).\left(a-b\right)=\left(a^2-2ab+b^2\right).a-\left(a^2-2ab+b^2\right).b\)\(=\left(a^3-2.a^2.b+a.b^2\right)-\left(b.a^2-2.b^2.a+b^3\right)=a^3-2.a^2.b+a.b^2-b.a^2+2.b^2.a-b^3=a^3-3.a^2.b+3.b^2.a-b^3\)

31 tháng 7 2016

1) (a+b).(a+b)=(a+b)2=a2+2ab+b2

2) (a-b)2=a2-2ab+b2

3) (a+b).(a-b)=a2-b2

4) (a+b)3=a3+3a2b+3ab2+b3

5) (a-b)3=a3-3a2b+3ab2-b3

6) (a+b).(a2-ab+b2)=a3+b3

7) (a-b).(a2+ab+b2)=a3-b3

mấy cái ày là hằng đẳng thức đáng nhớ mà

31 tháng 7 2016

lấy a+a b+b

lấy b^2-a

lấy a.b b.a

a^3 +b

b^3-a

hai câu cuối thì mình k biết

21 tháng 5 2018

1) \(\left(a+b\right).\left(a+b\right)=a.\left(a+b\right)+b.\left(a+b\right)=a^2+ab+b^2+ab\)

2) \(\left(a-b\right)^2=\left(a-b\right).\left(a-b\right)=a.\left(a-b\right)-b.\left(a-b\right)=a^2-ab-ab+b^2\)

\(=a^2+\left(-ab\right)+\left(-ab\right)+b^2\)

3) \(\left(a+b\right).\left(a-b\right)=a.\left(a-b\right)+b.\left(a-b\right)=a^2-ab+ab-b^2=a^2-b^2\)

\(=a^2+-\left(b^2\right)\)

4) \(\left(a+b\right)^3=\left(a+b\right).\left(a+b\right).\left(a+b\right)=a.\left(a+b\right).\left(a+b\right)+b.\left(a+b\right).\left(a+b\right)\)

\(=\left[a.\left(a+b\right)\right].\left(a+b\right)+\left[b.\left(a+b\right)\right].\left(a+b\right)=\left(a^2+ab\right).\left(a+b\right)+\left(ab+b^2\right).\left(a+b\right)\)

\(=a^2.\left(a+b\right)+ab.\left(a+b\right)+ab.\left(a+b\right)+b^2.\left(a+b\right)\)

\(=a^3+a^2b+a^2b+ab^2+a^2b+ab^2+b^2a+b^3\)

5) \(\left(a-b\right)^3=\left(a-b\right).\left(a-b\right).\left(a-b\right)=a.\left(a-b\right).\left(a-b\right)-b.\left(a-b\right).\left(a-b\right)\)

\(=\left(a^2-ab\right).\left(a-b\right)-\left(ba-b^2\right).\left(a-b\right)\)

\(=a^2.\left(a-b\right)-ab.\left(a-b\right)-ba.\left(a-b\right)+b^2.\left(a-b\right)\)

\(=a^3-a^2b-a^2b+ab^2-ba^2+b^2a-ba^2+b^2a-b^3\)

6) \(\left(a+b\right).\left(a^2-ab+b^2\right)=a.\left(a^2-ab+b^2\right)+b.\left(a^2-ab+b^2\right)\)

\(=a^3-a^2b+ab^2+ba^2-ab^2+b^3\)

\(=a^3+b^3\)

7) \(\left(a-b\right).\left(a^2+ab+b^2\right)=a.\left(a^2+ab+b^2\right)-b.\left(a^2+ab+b^2\right)\)

\(=a^3+a^2b+ab^2-ba^2-ab^2-b^3\)

\(=a^3-b^3\)

21 tháng 5 2018

1 a^2+2ab+b^2

2 a^2-2ab+b^2

3 a^2-b^2

4 a^3+3a^2b+3ab^2+b^3

5 a^3-3a^2b+3ab^2-b^3

6 a^3+b^3

7 a^3-b^3

21 tháng 5 2018

a) \(\left(a+b\right).\left(a-b\right)=a.\left(a-b\right)+b.\left(a-b\right)=a^2-ab+ba-b^2\)\(=a^2-b^2\)

b) \(\left(a+b\right)^3=\left(a+b\right).\left(a+b\right).\left(a+b\right)=a.\left(a+b\right).\left(a+b\right)+b.\left(a+b\right).\left(a+b\right)\)

\(=\left(a^2+ab\right).\left(a+b\right)+\left(ba+b^2\right).\left(a+b\right)\)\(=a^2.\left(a+b\right)+ab.\left(a+b\right)+ba.\left(a+b\right)+b^2.\left(a+b\right)\)

\(=a^3+a^2b+a^2b+ab^2+ba^2+b^2a+b^2a+b^3\)\(=a^3+3a^2b+3ab^2+b^3\)

c) \(\left(a+b\right).\left(a^2-ab+b^2\right)=a.\left(a^2-ab+b^2\right)+b.\left(a^2-ab+b^2\right)\)

\(=a^3-a^2b+ab^2+ba^2-ab^2+b^3\)\(=a^3+b^3\)

d) \(\left(a-b\right).\left(a^2+ab+b^2\right)=a.\left(a^2+ab+b^2\right)-b.\left(a^2+ab+b^2\right)\)

\(=a^3+a^2b+ab^2-ba^2-ab^2-b^3\)\(=a^3-b^3\)

e) \(\left(a-b\right)^3=\left(a-b\right).\left(a-b\right).\left(a-b\right)=a.\left(a-b\right).\left(a-b\right)-b.\left(a-b\right).\left(a-b\right)\)

\(=\left(a^2-ab\right).\left(a-b\right)-\left(ba-b^2\right).\left(a-b\right)\)\(=a^2.\left(a-b\right)-ab.\left(a-b\right)-ba.\left(a-b\right)+b^2.\left(a-b\right)\)

\(=a^3-a^2b-a^2b+ab^2-ba^2+b^2a+b^2a-b^3\)

\(=a^3-3a^2b+3ab^2-b^3\)

21 tháng 5 2018

1) (a+b).(a+b)=(a+b)2=a2+2ab+b2

2) (a-b)2=a2-2ab+b2

3) (a+b).(a-b)=a2-b2

4) (a+b)3=a3+3a2b+3ab2+b3

5) (a-b)3=a3-3a2b+3ab2-b3

6) (a+b).(a2-ab+b2)=a3+b3

7) (a-b).(a2+ab+b2)=a3-b3

18 tháng 8 2016

1)  (a+b)3=(a+b)(a+b)(a+b)=(a2+ab+ab+b2)(a+b)=(a2+2ab+b2​)(a+b)(a3+2a2b+ab2)+(a2b+2ab2+b3)=a3+2a2b+ab2+a2b+2ab2+b3

=a3+3a2b+3ab2+b3

18 tháng 8 2016

bạn có thể giải tất cả hộ mình không ?