Bài 2: Cho hình chữ nhật ABCD, gọi M và N lần lượt là trung điểm của AB, CD. Gọi E là giao điểm của AN và DM, gọi F là giao điểm của BN và CM.
a/ chứng minh tứ giác AMND, BMNC là hình chữ nhật.
b/ chứng minh tứ giác EMFN là hình thoi.
c/ AC cắt DM, MN, BN lần lượt tại H, O, K. Chứng minh AH=HK=KC,
d/ Chứng minh E, O, F thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn ơi, đề câu a sai nhé ! Mình đọc không có điểm I nha !
a) Xét tứ giác AMND có
AM//DN
AM=DN
Do đó: AMND là hình bình hành
Suy ra: AD=NM
b) Xét tứ giác BCNM có
BM//CN
BM=CN
Do đó: BCNM là hình bình hành
a: Xét tứ giác BMDN có
BM//ND
BM=ND
Do đó: BMDN là hình bình hành
Suy ra: MD//BN
a: Xét tứ giác BMDN có
BM//DN
BM=DN
Do đó: BMDN là hình bình hành
Suy ra: MD//BN và MD=BN(2)
b: Xét tứ giác AMND có
AM//ND
AM=ND
Do đó: AMND là hình bình hành
Suy ra: I là trung điểm của MD
hay \(MI=\dfrac{MD}{2}\)(1)
Xét tứ giác BMNC có
BM//NC
BM=NC
Do đó: BMNC là hình bình hành
Suy ra: K là trung điểm của BN
hay \(NK=\dfrac{BN}{2}\left(3\right)\)
Từ (1), (2) và (3) suy ra MI//NK và MI=NK
hay INKM là hình bình hành
a: Xét tứ giác BMDN có
BM//DN
BM=DN
Do đó: BMDN là hình bình hành
Suy ra: MD//BN
a: Xét tứ giác AMCN có
AM//CN
AM=CN
=>AMCN là hình bình hành
Xét tứ giác AMND có
AM//ND
AM=ND
AM=AD
=>AMND là hình thoi
b: AMND là hình thoi
=>I là trung điểm chung của AN và MD và AN vuông góc MD tại N
Xét tứ giác MBCN có
MB//CN
MB=CN
MB=BC
=>MBCN là hình thoi
=>MC vuông góc BN tại K và K là trung điểm chung của MC và BN
Xét ΔMDC có
MN là trung tuyến
MN=DC/2
=>ΔMDC vuông tại M
Xét tứ giác MINK có
góc MIN=góc MKN=góc IMK=90 độ
=>MINK là hình chữ nhật
c: Xét ΔMDC có MI/MD=MK/MC
nên IK//DC