Cho a,b,c ≥ 0 nhưng không đồng thời bằng 0 thỏa mãn ab + bc + ca = 1. Chứng minh rằng :
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{5}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT cho 2 số dương:
\(\frac{1}{\left(a+b\right)}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)
Xét: c + 1 = c + a + b + c
\(\frac{ab}{\left(c+1\right)}\le\frac{ab}{4}.\left[\frac{1}{\left(a+c\right)}+\frac{1}{\left(b+c\right)}\right]\)
Tương tự:
\(\frac{bc}{\left(a+1\right)}\le\frac{bc}{4}.\left[\frac{1}{\left(a+c\right)}+\frac{1}{\left(b+a\right)}\right]\)
\(\frac{ca}{\left(b+1\right)}\le\frac{ac}{4}.\left[\frac{1}{\left(a+b\right)}+\frac{1}{\left(c+b\right)}\right]\)
Cộng lại:
\(\frac{ac}{\left(c+1\right)}+\frac{bc}{\left(a+1\right)}+\frac{ca}{\left(b+1\right)}\le\frac{1}{4}\left\{\frac{ab}{\left(a+c\right)}+\frac{ab}{\left(b+c\right)}+\frac{bc}{\left(a+c\right)}+\frac{bc}{\left(a+c\right)}+\frac{ac}{\left(a+b\right)}\right\}\)
Cộng lại + rút gọn mẫu số
\(\frac{ab}{\left(c+1\right)}+\frac{bc}{\left(a+1\right)}+\frac{ca}{b+1}\le\frac{1}{4}\left(a+b+c\right)=\frac{1}{4}\)
Dấu '=' xảy ra khi a = b = c
P/s: Sai đâu bạn sửa nhé!
Áp dụng bđt Holder, ta có:
\(\left(\sqrt{\frac{ab}{a^2+b^2}}+\sqrt{\frac{bc}{b^2+c^2}}+\sqrt{\frac{ca}{c^2+a^2}}\right).\left(\sqrt{\frac{ab}{a^2+b^2}}+\sqrt{\frac{bc}{b^2+c^2}}+\sqrt{\frac{ca}{c^2+a^2}}\right)\left[a^2b^2\left(a^2+b^2\right)+b^2c^2\left(b^2+c^2\right)+c^2a^2\left(c^2+a^2\right)\right]\ge\left(ab+bc+ca\right)^3=\frac{\left(a^2+b^2+c^2\right)^3}{8}\)
=>\(VT^2\ge\frac{1}{8}.\frac{\left(a^2+b^2+c^2\right)^3}{a^2b^4+a^4b^2+b^2c^4+b^4c^2+c^2a^4+c^4a^2}\)
Đặt a2=x, b2=y, c2=z
=>\(VT^2\ge\frac{1}{8}.\frac{\left(x+y+z\right)^3}{x^2y+xy^2+y^2z+y^2z+z^2x+zx^2}\)(1)
Theo bđt Schur, ta có:
\(x\left(x-y\right)\left(x-z\right)+y\left(y-z\right)\left(y-x\right)+z\left(z-x\right)\left(z-y\right)\ge0\)
<=>\(x^3+y^3+z^3+3xyz\ge x^2y+xy^2+y^2z+y^2z+z^2x+zx^2\)
<=>\(x^3+y^3+z^3+6xyz+3\left(x^2y+xy^2+y^2z+y^2z+z^2x+zx^2\right)\ge4.\left(x^2y+xy^2+y^2z+y^2z+z^2x+zx^2\right)+3xyz\)
Vì \(xyz=\left(abc\right)^2\ge0\)
=>\(\left(x+y+z\right)^3\ge4\left(x^2y+xy^2+y^2z+y^2z+z^2x+zx^2\right)\)
=>\(\frac{\left(x+y+z\right)^3}{x^2y+xy^2+y^2z+y^2z+z^2x+zx^2}\ge4\)
Thay vào (1)=>\(VT^2\ge\frac{1}{2}=>VT\ge\frac{1}{\sqrt{2}}\)
=>ĐPCM
a,b,c>=0 mới được nhé
Đặt biểu thức là A
\(\sqrt{\frac{ab}{a^2+b^2}}=\frac{\sqrt{ab\left(a^2+b^2\right)}}{a^2+b^2}>=\frac{\sqrt{2abab}}{a^2}=\frac{\sqrt{2}ab}{a^2+b^2}\)
Dấu = xảy ra khi có một trong 2 số a,b =0 hoặc a=b.
Tương tự=> A>=\(\frac{\sqrt{2}ab}{a^2+b^2}+\frac{\sqrt{2}bc}{b^2+c^2}+\frac{\sqrt{2}ca}{a^2+c^2}\)
\(\sqrt{2}A>=\frac{2ab}{a^2+b^2}+\frac{2bc}{b^2+c^2}+\frac{2ca}{c^2+a^2}\)
\(\sqrt{2}A+3>=\frac{\left(a+b\right)^2}{a^2+b^2}+\frac{\left(b+c\right)^2}{b^2+c^2}+\frac{\left(c+a\right)^2}{c^2+a^2}.\)
>=\(\frac{\left(2a+2b+2c\right)^2}{2\left(a^2+b^2+c^2\right)}=\frac{4\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=4.\)
=>A>=1/căn 2
Dấu = xảy ra khi 2 số bằng nhau, một số =0
Ta dễ có:\(\frac{1}{a^2+1}=\frac{a^2+1-a^2}{a^2+1}=1-\frac{a^2}{a^2+1}\ge1-\frac{a^2}{2a}=1-\frac{a}{2}\)
Một cách tương tự \(\frac{1}{b^2+1}\ge1-\frac{b}{2};\frac{1}{c^2+1}\ge1-\frac{c}{2}\)
Khi đó: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\ge3-\frac{a+b+c}{2}\)
Cần chứng minh: \(3-\frac{a+b+c}{2}\ge\frac{3}{2}\Leftrightarrow a+b+c\le3\)
Hình như có gì đó sai sai @@
Lời giải kia sai rồi :V Làm cách khác:
Ta có:\(\frac{1}{a^2+1}=\frac{a^2+1-a^2}{a^2+1}=1-\frac{a^2}{a^2+1}\)
Tương tự rồi ta được:
\(LHS=3-\left(\frac{a^2}{a^2+1}+\frac{b^2}{b^2+1}+\frac{c^2}{c^2+1}\right)\)
Bất đẳng thức cần chứng minh tương đương với:
\(\frac{a^2}{a^2+1}+\frac{b^2}{b^2+1}+\frac{c^2}{c^2+1}\le\frac{3}{2}\)
\(\Leftrightarrow\frac{a^2}{3a^2+3}+\frac{b^2}{3b^2+3}+\frac{c^2}{3c^2+3}\le\frac{1}{2}\)
Ta dễ có được:
\(\frac{4a^2}{3a^2+3}=\frac{4a^2}{3a^2+ab+bc+ca}=\frac{\left(a+a\right)^2}{a\left(a+b+c\right)+2a^2+bc}\le\frac{a^2}{a\left(a+b+c\right)}+\frac{a^2}{2a^2+bc}\)
Tương tự:
\(\frac{4b^2}{3b^2+3}\le\frac{b^2}{b\left(a+b+c\right)}+\frac{b^2}{2b^2+ca};\frac{4c^2}{3c^2+3}\le\frac{c^2}{c\left(a+b+c\right)}+\frac{c^2}{2c^2+ab}\)
\(\Rightarrow LHS\le\frac{1}{4}\left(\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}+\Sigma\frac{a^2}{2a^2+bc}\right)=\frac{1}{4}\left(1+\Sigma\frac{a^2}{2a^2+bc}\right)\)
Một cách khác ta dễ có được: \(\Sigma\frac{a^2}{2a^2+bc}\le1\)
Done !
Em chỉ giải ra được 1 TH dấu bằng thôi: a = b = c (còn trường hợp a = b; c=0 và các hoán vị thì em chịu, vì khi xét dấu = trong bđt thì em chỉ xảy ra 1 th)
Áp dụng BĐT Cauchy-Schwarz dạng Engel;
\(VT\ge\frac{16}{a^2+b^2+c^2+\left(a+b+c\right)^2}\ge\frac{16}{\frac{\left(a+b+c\right)^2}{3}+\left(a+b+c\right)^2}\)\(=\frac{12}{\left(a+b+c\right)^2}\) (đpcm)
Đẳng thức xảy ra khi a = b = c
1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)
\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)
\(\frac{1}{1+ab}+\frac{1}{1+bc}+\frac{1}{1+ca}\)
\(\ge\frac{\left(1+1+1\right)^2}{1+ab+1+bc+1+ca}\)
\(=\frac{9}{3+ab+bc+ca}\)
\(\ge\frac{9}{3+\frac{\left(a+b+c\right)^2}{3}}\)
\(\ge\frac{9}{3+\frac{3^2}{3}}=\frac{9}{6}=\frac{3}{2}\)
bài hơi khoai
Không mất tính tổng quát giả sử \(c=max\left\{a,b,c\right\}\)
\(\Rightarrow2c\ge a+b\)
\(\Rightarrow c\ge\frac{a+b}{2}\)
Từ giả thiết \(\Rightarrow a,b\le1\)
\(\Rightarrow ab\le1\)( *)
Đặt \(P=\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}-\frac{5}{2}\)
\(=\frac{1}{a+b}+\frac{1}{b+\frac{1-ab}{a+b}}+\frac{1}{a+\frac{1-ab}{a+b}}-\frac{5}{2}\)
Đặt \(S=\frac{1}{a+b+\frac{1}{a+b}}+a+b+\frac{1}{a+b}-\frac{5}{2}\)
Xét hiệu \(P-S=\)\(\frac{1}{a+b}+\frac{1}{b+\frac{1-ab}{a+b}}+\frac{1}{a+\frac{1-ab}{a+b}}-\frac{5}{2}-\)\(-\frac{1}{a+b+\frac{1}{a+b}}-a-b-\frac{1}{a+b}+\frac{5}{2}\)
\(=\frac{1}{\frac{ab+b^2+1-ab}{a+b}}+\frac{1}{\frac{a^2+ab+1-ab}{a+b}}-\frac{1}{\frac{\left(a+\right)^2+1}{a+b}}-\left(a+b\right)\)
\(=\frac{a+b}{b^2+1}+\frac{a+b}{c^2+1}-\left(a+b\right)\left[1+\frac{1}{1+\left(a+b\right)^2}\right]\)
Ta sẽ chứng minh \(\frac{a+b}{b^2+1}+\frac{a+b}{c^2+1}-\left(a+b\right)\left[1+\frac{1}{1+\left(a+b\right)^2}\right]\ge0\)
\(\Leftrightarrow\frac{a+b}{b^2+1}+\frac{a+b}{c^2+1}\ge\left(a+b\right)\left[1+\frac{1}{1+\left(a+b\right)^2}\right]\)
\(\Leftrightarrow\frac{1}{b^2+1}+\frac{1}{c^2+1}\ge1+\frac{1}{1+\left(a+b\right)^2}\)
\(\Leftrightarrow\frac{2+a^2+b^2}{\left(1+a^2\right)\left(1+b^2\right)}\ge\frac{2+\left(a+b\right)^2}{1+\left(a+b\right)^2}\)
\(\Rightarrow\left(2+b^2+a^2\right)\left[1+\left(a+b\right)^2\right]\ge\left[2+\left(a+b\right)^2\right]\left(1+a^2\right)\left(1+b^2\right)\)
\(\Leftrightarrow2+2\left(a+b\right)^2+\left(a+b\right)^2\left(a^2+b^2\right)+a^2+b^2\ge\left[2+\left(a+b\right)^2\right]\left(1+a^2+b^2+a^2b^2\right)\)
\(\Leftrightarrow2+2\left(a+b\right)^2+\left(a+b\right)^2\left(a^2+b^2\right)+a^2+b^2-2a^2b^2-\left(a+b\right)^2\left(a^2+b^2\right)-\left(a+b\right)^2a^2b^2\)\(-2-2\left(a^2+b^2\right)-\left(a+b^2\right)\ge0\)
\(\Leftrightarrow-2a^2b^2-\left(a+b\right)^2a^2b^2+a^2+b^2-\left(a+b\right)^2\ge0\)
\(\Leftrightarrow ab\left[ab\left(a+b\right)^2+2ab-2\right]\le0\)
\(\Leftrightarrow ab\left(a+b\right)^2+2ab-2\le0\)( do a,b \(\ge0\))
\(\Leftrightarrow ab\left(a+b\right)^2\le2\left(1-ab\right)\)
\(\Leftrightarrow ab\left(a+b\right)^2\le2c\left(a+b\right)\) (1)
Mà \(c\ge\frac{a+b}{2}\)
\(\Rightarrow2c\left(a+b\right)\ge\left(a+b\right)^2\)
Ta có: \(\left(a+b\right)^2\ge ab\left(a+b\right)^2\)
\(\Leftrightarrow\left(a+b\right)^2\left(1-ab\right)\ge0\)( đúng do (*) )
\(\Rightarrow\left(1\right)\)đúng
\(\Rightarrow P-S\ge0\)
\(\Rightarrow P\ge S\)
Ta phải chứng minh \(S\ge0\)
\(\Leftrightarrow\frac{1}{a+b+\frac{1}{a+b}}+a+b+\frac{1}{a+b}\ge\frac{5}{2}\)
\(\Leftrightarrow\frac{a+b}{1+\left(a+b\right)^2}+\frac{1+\left(a+b\right)^2}{a+b}\ge\frac{5}{2}\) (2)
Đặt \(x=\frac{1+\left(a+b\right)^2}{a+b}\)
Ta có: \(1+\left(a+b\right)^2\ge2\left(a+b\right)\)
\(\Leftrightarrow\left(a+b-1\right)^2\ge0\)( đúng )
\(\Rightarrow x=\frac{1+\left(a+b\right)^2}{a+b}\ge2\)
=> (2) có dạng \(x+\frac{1}{x}\ge\frac{5}{2}\)
\(\Leftrightarrow2x^2-5x+2\ge0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)\ge0\)( đúng )
\(\Rightarrow S\ge0\)mà \(P\ge S\)
\(\Rightarrow P\ge0\)
\(\Leftrightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{5}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a+b=1\\ab+bc+ca=1\\ab\left[ab\left(a+b\right)^2+2ab-2\right]=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a=c=1;b=0\\b=c=1;a=0\end{cases}}\)