K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
9 tháng 2 2021

Ta có \(A=[\frac{2}{\left(x+1\right)^3}\left(\frac{1}{x}+1\right)+\frac{1}{x^2+2x+1}\left(\frac{1}{x^2}+1\right)]:\frac{x-1}{x^3}\)

\(\Leftrightarrow A=\left[\frac{2}{\left(x+1\right)^3}.\frac{x+1}{x}+\frac{1}{\left(x+1\right)^2}.\frac{x^2+1}{x^2}\right].\frac{x^3}{x-1}\)

\(\Leftrightarrow A=\left[\frac{2x+x^2+1}{x^2\left(x+1\right)^2}\right].\frac{x^3}{x+1}=\frac{x}{x+1}\)

Để \(A=\frac{x}{x+1}< 1\Leftrightarrow\frac{1}{x+1}>0\Leftrightarrow x>-1\)

Để \(A=1-\frac{1}{x+1}\text{ nguyên thì }\frac{1}{x+1}\text{ nguyên hay }x\in\left\{-2,0\right\} \)

27 tháng 6 2017

a)\(P=\left[\frac{2}{\left(x+1\right)^3}.\left(\frac{1}{x}+1\right)+\frac{1}{x^2+2x+1}.\left(\frac{1}{x^2}+1\right)\right]:\frac{x-1}{x^3}\left(ĐKXĐ:x\ne0;-1\right)\)

\(P=\left[\frac{2}{\left(x+1\right)^3}.\left(\frac{x+1}{x}\right)+\frac{1}{\left(x+1\right)^2}.\left(\frac{x^2+1}{x^2}\right)\right]:\frac{x-1}{x^3}\)

\(P=\left[\frac{2}{\left(x+1\right)^2x}+\frac{x^2+1}{\left[x\left(x+1\right)\right]^2}\right]:\frac{x-1}{x^3}\)

\(P=\left[\frac{x^2+2x+1}{\left[x\left(x+1\right)\right]^2}\right]:\frac{x-1}{3}\)

\(P=\frac{\left(x+1\right)^2}{x^2\left(x+1\right)^2}:\frac{x-1}{3}\)

\(P=\frac{3}{x^2\left(x-1\right)}\)

b)Bài này liên quan đến dấu lớn nên mk ko làm đc

11 tháng 2 2019

a) ĐKXĐ: \(x\ne-1;0;1.\)Ta có:

 \(A=\left[\frac{2}{\left(x+1\right)^3}\left(\frac{1}{x}+1\right)+\frac{1}{x^2+2x+1}\left(\frac{1}{x^2}+1\right)\right]:\frac{x-1}{x^3}\)

    \(=\left[\frac{2}{\left(x+1\right)^3}\cdot\frac{x+1}{x}+\frac{1}{\left(x+1\right)^2}\cdot\frac{x^2+1}{x^2}\right]\cdot\frac{x^3}{x-1}\)

    \(=\left[\frac{2}{x\left(x+1\right)^2}+\frac{x^2+1}{x^2\left(x+1\right)^2}\right]\cdot\frac{x^3}{x-1}\)

    \(=\left[\frac{2x}{x^2\left(x+1\right)^2}+\frac{x^2+1}{x^2\left(x+1\right)^2}\right]\cdot\frac{x^3}{x-1}\)

    \(=\frac{2x+x^2+1}{x^2\left(x+1\right)^2}\cdot\frac{x^3}{x-1}\)

    \(=\frac{\left(x+1\right)^2\cdot x}{\left(x+1\right)^2\left(x-1\right)}=\frac{x}{x-1}.\)

Vậy \(A=\frac{x}{x-1}\)với \(x\ne-1;0;1.\)

b) A < 1 \(\Leftrightarrow\frac{x}{x-1}< 1\Leftrightarrow\frac{x}{x-1}-1< 0\Leftrightarrow\frac{x}{x-1}-\frac{x-1}{x-1}< 0\)\(\Leftrightarrow\frac{1}{x-1}< 0\)

\(\Leftrightarrow x-1< 0\)(do 1 > 0)\(\Leftrightarrow x< 1.\)

Kết hợp ĐKXĐ, A < 1 khi \(x< 1\)và \(x\ne-1;0.\)

c) \(A\inℤ\Leftrightarrow\frac{x}{x-1}\inℤ.\)Mà \(x\inℤ\)\(\Rightarrow x⋮\left(x-1\right)\Rightarrow\left(x-1+1\right)⋮\left(x-1\right)\Rightarrow1⋮\left(x-1\right)\Rightarrow\left(x-1\right)\inƯ\left(1\right)=\left\{1;-1\right\}.\)Ta lập bảng sau:

\(x-1\)1-1
\(x\)20
Kết luậnx thoả mãn ĐKXĐx không thoả mãn ĐKXĐ

Vậy để A nguyên thì x = 2.

21 tháng 4 2020

a) Ta có :A = \(\left(\frac{\left(x-1\right)^2}{3x+\left(x-1\right)^2}-\frac{1-2x^2+4x}{x^3-1}+\frac{1}{x-1}\right):\frac{x^2+x}{x^3+x}\)

ĐK: \(\hept{\begin{cases}x\ne0\\x\ne1\end{cases}}\)

A = \(\left(\frac{\left(x-1\right)^2}{x^2+x+1}-\frac{1-2x^2+4x}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{1}{x-1}\right):\frac{x\left(x+1\right)}{x\left(x^2+1\right)}\)

    \(\frac{\left(x-1\right)^3-1+2x^2-4x+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}.\frac{x^2+1}{x+1}\)

    \(\frac{x^3-3x^2+3x-1+3x^2-3x}{\left(x-1\right)\left(x^2+x+1\right)}.\frac{x^2+1}{x+1}\)

    = \(\frac{x^3-1}{\left(x-1\right)\left(x^2+x+1\right)}.\frac{x^2+1}{x+1}=1.\frac{x^2+1}{x+1}=\frac{x^2+1}{x+1}\)

b) Để A > - 1 <=> \(\frac{x^2+1}{x+1}>-1\)

                       <=> \(\frac{x^2+1}{x+1}+1>0\)

                        <=> \(\frac{x^2+x+2}{x+1}>0\)

Vì x2 + x + 2 >0 \(\forall x\)

=> A > 0 <=> x + 1 > 0 <=> x > -1