K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2022

A B C H M N D

a/ Ta có

tg ABC cân tại A (gt)

\(AH\perp BC\) (gt)

=> BH=CH (Trong tg cân đường cao xp từ đỉnh tg cân đồng thời là đường trung tuyến)

Ta có AM=CM (gt)

=> HM là đường trung tuyến của tg ABC \(\Rightarrow HM=\dfrac{AB}{2}\)

b/

Ta có

HM là trung tuyến của tg ABC (cmt) => HM//AB => HM//AD (1)

Xét tg DBC có

\(AC\perp AB\Rightarrow AC\perp BD\)

\(CN\perp BM\) (gt) \(\Rightarrow BN\perp CD\)

=> M là trực tâm của tg DBC => \(DM\perp BC\) mà \(AH\perp BC\)

=> DM//AH (2)

Từ (1) (2) => ADMH là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau)

c/

Ta có 

\(AD=HM\) (cạnh đối hbh) \(\Rightarrow AD=HM=\dfrac{AB}{2}\) 

Mà \(AB=AC\Rightarrow AD=\dfrac{AC}{2}\)

M là trung điểm AC (gt) \(\Rightarrow AM=CM=\dfrac{AC}{2}\)

=> AD=AM

 

a: ΔABC vuông cân tại A có AH là đường cao

nên H là trung điểm của BC

Xét ΔCAB có CH/CB=CM/CA=1/2

nên HM//AB và HM/AB=CH/CB=1/2

=>HM=1/2AB

c: Xét ΔCDB có

CA,BN là đường cao

CA cắt BN tại M

=>M là trực tâm

=>DM vuông góc BC

=>góc MDB=90-45=45 độ

Xét ΔADM vuông tại A có góc ADM=45 độ

nên ΔADM vuông cân tại A

=>AD=AM

18 tháng 11 2016

a,tam giác ABC vuông cân tại A nên BAC=900,AB=AC

Dễ CM  AMCN là hình bình hành (AM//CN,AC//MN) ,mà MAC(BAC)=900

=>AMCN là hình chữ nhật

b,Dễ CM  H là trung điểm BC (M là tr.điểm AB,MH//AC)

CM BMCN là hình bình hành (MB//CN,MB=CN) ,H là tr.điểm BC nên H cũng là tr.điểm MN

CM \(\Delta HAM=\Delta HDN\) (g.c.g)=>AM=DN

Ta có CN+ND=AM+AM=2AM=AB => AB=CD ,mà AB//CD nên ABCD là hình bình hành

hình bình hành ABCD có AB=AC nên là hình thoi

hình thoi ABCD có BAC=900 nên là hình vuông (đpcm)

9 tháng 11 2017

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

TÌM ĐIỂM KHÁC biệt ????

9 tháng 3 2018
Ta có : AB = AC ( tam giác ABC cân tại A) mà M, N lần lượt là trung điểm của AC và AB suy ra AN = AM Xét tam giác ABM và tam giác ACN có : Góc A : góc chung AM = AN ( cmt) AB = AC ( tam giác ABC cân tại A) Suy ra tam giác ABM = tam giác ACN ( c - g - c) Suy ra BM = CN ( 2 cạnh t/ứng) b/ Có tam giác ABM = tam giác ACN ( theo câu a) Suy ra góc ABM = góc ACN ( 2 góc t/ứng) Có góc ABM + góc MBC = góc B Góc ACN + góc NCB = góc C mà góc B = góc C (tam giác ABC cân tại A), góc ABM = góc ACN ( cmt) suy ra góc IBC = góc ICB suy ra tam giác IBC cân tại I c/ Có tam giác IBC cân tại B ( theo câu b) suy ra IB = IC Xét tam giác AIB và tam giác AIC có : AI : cạnh chung AB = AC (tam giác ABC cân tại A) IB = IC ( cmt) Suy ra tam giác AIB = tam giác AIC ( c - c - c) Suy ra góc BAI = góc CAI ( 2 góc t/ứng) mà AI nằm giữa 2 tia AB và AC Suy ra AI là tia phân giác góc A d/ Gọi H là giao điểm của AI và BC Xét tam giác AHB và tam giác AHC có : Góc B = góc C ( tam giác ABC cân tại A) AB = AC ( tam giác ABC cân tại A) Góc BAI = góc CAI ( AI là tia phân giác góc A) Suy ra tam giác AHB = tam giác AHC ( g - c - g) Suy ra góc AHB = góc AHC( 2 góc t/ứng) mà góc AHB + góc AHC = 180 độ suy ra AHB = 90 độ suy ra AI vuông góc với BC Bạn tự vẽ hình nhé
6 tháng 3 2018

minh can gap ik

14 tháng 10 2021

a: Ta có: H và M đối xứng nhau qua AB

nên AB là đường trung trực của HM

Suy ra: AH=AM(1)

Ta có:  H và N đối xứng nhau qua AC

nên AC là đường trung trực của HN

Suy ra: AN=AH(2)

Từ (1) và (2) suy ra AN=AM

15 tháng 7 2023

a) Xét △ABM vuông tại A và △DBM vuông tại D có:

BM chung

AB=DB=3cm(gt)

=> △ABM=△DBM (cạnh huyền-cạnh góc vuông) => AM=DM(2 cạnh t/ứ)

b) Xét △AMN và △DMC có:

AMN=DMC(2 góc đối đỉnh)

AM=DM(cmt)

MAN=MDC(gt)

=> △AMN=△DMC(g.c.g) => MN=MC(2 cạnh tướng ứng) => △MCN cân tại M

c) Vì △AMN=△DMC(cmt) => AN=DC(2 cạnh tương ứng)

Ta có AB=BD;AN=DC;BN=AN+AB;BC=BD+DC => BN=BC=> △BNC cân tại B

Vì △ABM=△DBM(cmt)=> ABM=DBM=> NBK=CBK (A thuộc BN; D thuộc BC;M thuộc BK) => BK là phân giác NBC

=> Trong △BNC cân tại B, BK là đường phân giác, đường trung trực, đường trung tuyến, đường cao,... (t/c) => BK là đường trung trực của CN

d) Áp dụng định lý Pytago vào △ABC vuông tại A có: AB2+AC2=BC^2

=> 9+16=25=BC^2 (cm) => BC = 5 cm

Ta có BD+DC=BC;BD=3cm=> DC=2cm

Ta có AN=DC(cmt) => AN=2cm

Áp dụng định lý Pytago vào △ANC vuông tại A có:

AN^2+AC^2=NC^2

=> 4+16=NC^2

=> NC= căn 20 = 2 x căn 5 (cm)

Vì BK là trung trực NC => K là trung điểm NC => KC = 1/2 NC = căn 5 (cm)

Áp dụng định lý Pytago vào △BKC vuông tại K có:

BC^2=BK^2+KC^2 => BK^2=BC^2+KC^2=25-5=20cm => BK=căn 20=2 nhânnhân căn 5 (cm)

15 tháng 12 2021

sai hay đúng?

AH
Akai Haruma
Giáo viên
29 tháng 3 2021

1. 

Câu 1:

a) $CD\perp AC, BH\perp AC$ nên $CD\parallel BH$

Tương tự: $BD\parallel CH$

Tứ giác $BHCD$ có hai cặp cạnh đối song song nhau (BH-CD và BD-CH) nên là hình bình hành

b) 

Áp dụng bổ đề sau: Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền thì bằng 1 nửa cạnh huyền.

Ta có:

$BO$ là trung tuyến của tgv $ABD$ nên $BO=\frac{AD}{2}$

$CO$ là trung tuyến của tgv $ACD$ nên $CO=\frac{AD}{2}$

$\Rightarrow BO=CO(1)$ 

$OK\parallel AH, AH\perp BC$ nên $OK\perp BC(2)$

Từ $(1);(2)$ ta dễ thấy $\triangle OBK=\triangle OCK$ (ch-cgv)

$\Rightarrow BK=CK$ hay $K$ là trung điểm $BC$

Mặt khác:

$HBDC$ là hình bình hành nên $HD$ cắt $BC$ tại trung điểm mỗi đường. Mà $K$ là trung điểm $BC$ nên $K$ là trung điểm $HD$

Xét tam giác $AHD$ có $O$ là t. điểm $AD$, $K$ là t. điểm $HD$ nên $OK$ là đường trung bình của tam giác $AHD$ ứng với cạnh $AH$.

$\Rightarrow OK=\frac{AH}{2}=3$ (cm)

 

AH
Akai Haruma
Giáo viên
29 tháng 3 2021

Hình câu 1:

undefined