Cho tam giác ABC vuông cân tại A, đường cao AH, gọi M là trung điểm của AC.
a) Chứng minh: HM = AB/2
b) Vẽ CN vuông góc với BM tại N. Gọi D là giao điểm của 2 đường thẳng AB và CN. Chứng minh: Tứ giác ADMH là hình bình hành.
c) Chứng minh: AD=AM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔABC vuông cân tại A có AH là đường cao
nên H là trung điểm của BC
Xét ΔCAB có CH/CB=CM/CA=1/2
nên HM//AB và HM/AB=CH/CB=1/2
=>HM=1/2AB
c: Xét ΔCDB có
CA,BN là đường cao
CA cắt BN tại M
=>M là trực tâm
=>DM vuông góc BC
=>góc MDB=90-45=45 độ
Xét ΔADM vuông tại A có góc ADM=45 độ
nên ΔADM vuông cân tại A
=>AD=AM
a,tam giác ABC vuông cân tại A nên BAC=900,AB=AC
Dễ CM AMCN là hình bình hành (AM//CN,AC//MN) ,mà MAC(BAC)=900
=>AMCN là hình chữ nhật
b,Dễ CM H là trung điểm BC (M là tr.điểm AB,MH//AC)
CM BMCN là hình bình hành (MB//CN,MB=CN) ,H là tr.điểm BC nên H cũng là tr.điểm MN
CM \(\Delta HAM=\Delta HDN\) (g.c.g)=>AM=DN
Ta có CN+ND=AM+AM=2AM=AB => AB=CD ,mà AB//CD nên ABCD là hình bình hành
hình bình hành ABCD có AB=AC nên là hình thoi
hình thoi ABCD có BAC=900 nên là hình vuông (đpcm)
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
TÌM ĐIỂM KHÁC biệt ????
a: Ta có: H và M đối xứng nhau qua AB
nên AB là đường trung trực của HM
Suy ra: AH=AM(1)
Ta có: H và N đối xứng nhau qua AC
nên AC là đường trung trực của HN
Suy ra: AN=AH(2)
Từ (1) và (2) suy ra AN=AM
a) Xét △ABM vuông tại A và △DBM vuông tại D có:
BM chung
AB=DB=3cm(gt)
=> △ABM=△DBM (cạnh huyền-cạnh góc vuông) => AM=DM(2 cạnh t/ứ)
b) Xét △AMN và △DMC có:
AMN=DMC(2 góc đối đỉnh)
AM=DM(cmt)
MAN=MDC(gt)
=> △AMN=△DMC(g.c.g) => MN=MC(2 cạnh tướng ứng) => △MCN cân tại M
c) Vì △AMN=△DMC(cmt) => AN=DC(2 cạnh tương ứng)
Ta có AB=BD;AN=DC;BN=AN+AB;BC=BD+DC => BN=BC=> △BNC cân tại B
Vì △ABM=△DBM(cmt)=> ABM=DBM=> NBK=CBK (A thuộc BN; D thuộc BC;M thuộc BK) => BK là phân giác NBC
=> Trong △BNC cân tại B, BK là đường phân giác, đường trung trực, đường trung tuyến, đường cao,... (t/c) => BK là đường trung trực của CN
d) Áp dụng định lý Pytago vào △ABC vuông tại A có: AB2+AC2=BC^2
=> 9+16=25=BC^2 (cm) => BC = 5 cm
Ta có BD+DC=BC;BD=3cm=> DC=2cm
Ta có AN=DC(cmt) => AN=2cm
Áp dụng định lý Pytago vào △ANC vuông tại A có:
AN^2+AC^2=NC^2
=> 4+16=NC^2
=> NC= căn 20 = 2 x căn 5 (cm)
Vì BK là trung trực NC => K là trung điểm NC => KC = 1/2 NC = căn 5 (cm)
Áp dụng định lý Pytago vào △BKC vuông tại K có:
BC^2=BK^2+KC^2 => BK^2=BC^2+KC^2=25-5=20cm => BK=căn 20=2 nhânnhân căn 5 (cm)
1.
Câu 1:
a) $CD\perp AC, BH\perp AC$ nên $CD\parallel BH$
Tương tự: $BD\parallel CH$
Tứ giác $BHCD$ có hai cặp cạnh đối song song nhau (BH-CD và BD-CH) nên là hình bình hành
b)
Áp dụng bổ đề sau: Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền thì bằng 1 nửa cạnh huyền.
Ta có:
$BO$ là trung tuyến của tgv $ABD$ nên $BO=\frac{AD}{2}$
$CO$ là trung tuyến của tgv $ACD$ nên $CO=\frac{AD}{2}$
$\Rightarrow BO=CO(1)$
$OK\parallel AH, AH\perp BC$ nên $OK\perp BC(2)$
Từ $(1);(2)$ ta dễ thấy $\triangle OBK=\triangle OCK$ (ch-cgv)
$\Rightarrow BK=CK$ hay $K$ là trung điểm $BC$
Mặt khác:
$HBDC$ là hình bình hành nên $HD$ cắt $BC$ tại trung điểm mỗi đường. Mà $K$ là trung điểm $BC$ nên $K$ là trung điểm $HD$
Xét tam giác $AHD$ có $O$ là t. điểm $AD$, $K$ là t. điểm $HD$ nên $OK$ là đường trung bình của tam giác $AHD$ ứng với cạnh $AH$.
$\Rightarrow OK=\frac{AH}{2}=3$ (cm)
a/ Ta có
tg ABC cân tại A (gt)
\(AH\perp BC\) (gt)
=> BH=CH (Trong tg cân đường cao xp từ đỉnh tg cân đồng thời là đường trung tuyến)
Ta có AM=CM (gt)
=> HM là đường trung tuyến của tg ABC \(\Rightarrow HM=\dfrac{AB}{2}\)
b/
Ta có
HM là trung tuyến của tg ABC (cmt) => HM//AB => HM//AD (1)
Xét tg DBC có
\(AC\perp AB\Rightarrow AC\perp BD\)
\(CN\perp BM\) (gt) \(\Rightarrow BN\perp CD\)
=> M là trực tâm của tg DBC => \(DM\perp BC\) mà \(AH\perp BC\)
=> DM//AH (2)
Từ (1) (2) => ADMH là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau)
c/
Ta có
\(AD=HM\) (cạnh đối hbh) \(\Rightarrow AD=HM=\dfrac{AB}{2}\)
Mà \(AB=AC\Rightarrow AD=\dfrac{AC}{2}\)
M là trung điểm AC (gt) \(\Rightarrow AM=CM=\dfrac{AC}{2}\)
=> AD=AM