K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2022

6 tháng 11 2022

NV
9 tháng 1

\(4\left(a+b+c\right)=a^2+\left(b+c\right)^2\ge\dfrac{1}{2}\left(a+b+c\right)^2\)

\(\Rightarrow a+b+c\le8\)

\(a^2+16-16\ge8a-16\)

\(\Rightarrow P\ge8\left(a+b+c\right)-16+\dfrac{8100}{\sqrt{2a+2b+1}+\sqrt{2c+1}}\)

\(\Rightarrow P\ge8\left(a+b+c\right)-16+\dfrac{48600}{6\sqrt{2a+2b+1}+6\sqrt{2c+1}}\)

\(\Rightarrow P\ge8\left(a+b+c\right)-16+\dfrac{24300}{a+b+c+10}\)

\(\Rightarrow P\ge8\left(a+b+c+10+\dfrac{324}{a+b+c+10}\right)+\dfrac{21708}{a+b+c+10}-96\)

\(\Rightarrow P\ge16.\sqrt{324}+\dfrac{21708}{18}-96=1398\)

Dấu "=" xảy ra tại \(\left(a;b;c\right)=\left(4;0;4\right)\)

24 tháng 12 2018

bai nay t lam roi vao trang chu cua nick thangbnsh cua t keo xuong tim la thay

24 tháng 12 2018

Câu hỏi của Tuyển Trần Thị - Toán lớp 9 | Học trực tuyến

17 tháng 11 2017

Từ \(7\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=6\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)+2017\)

\(\Leftrightarrow7\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\le6\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)+2017\)\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\le2017\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(T=\dfrac{1}{\sqrt{3\left(2a^2+b^2\right)}}+\dfrac{1}{\sqrt{3\left(2b^2+c^2\right)}}+\dfrac{1}{\sqrt{3\left(2c^2+a^2\right)}}\)

\(=\dfrac{1}{\sqrt{\left(2+1\right)\left(2a^2+b^2\right)}}+\dfrac{1}{\sqrt{\left(2+1\right)\left(2b^2+c^2\right)}}+\dfrac{1}{\sqrt{\left(2+1\right)\left(2c^2+a^2\right)}}\)

\(\le\dfrac{1}{2a+b}+\dfrac{1}{2b+c}+\dfrac{1}{2c+a}\le\dfrac{1}{9}\left(\dfrac{2^2}{2a}+\dfrac{1^2}{b}\right)+\dfrac{1}{9}\left(\dfrac{2^2}{2b}+\dfrac{1^2}{c}\right)+\dfrac{1}{9}\left(\dfrac{2^2}{2c}+\dfrac{1^2}{a}\right)\)

\(\le\dfrac{1}{9}\left(\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{3}{c}\right)\)\(=\dfrac{1}{3a}+\dfrac{1}{3b}+\dfrac{1}{3c}\le\sqrt{\left(\dfrac{1}{81}+\dfrac{1}{81}+\dfrac{1}{81}\right)\left(\dfrac{9}{a^2}+\dfrac{9}{b^2}+\dfrac{9}{c^2}\right)}\)

\(\le\sqrt{\dfrac{1}{81}\cdot3\cdot9\cdot2017}=\sqrt{\dfrac{2017}{3}}\)

Vậy \(T_{Max}=\sqrt{\dfrac{2017}{3}}\) khi \(a=b=c=\sqrt{\dfrac{3}{2017}}\)

So kimochiii~

NV
3 tháng 10 2021

\(404=3\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)-2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)\ge\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2-\dfrac{2}{3}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2\)

\(\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2\le1212\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\le2\sqrt{303}\)

Ta có:

\(5a^2+2ab+2b^2=\left(a-b\right)^2+\left(2a+b\right)^2\ge\left(2a+b\right)^2\)

\(\Rightarrow P\le\dfrac{1}{2a+b}+\dfrac{1}{2b+c}+\dfrac{1}{2c+a}\le\dfrac{1}{9}\left(\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{2}{b}+\dfrac{1}{c}+\dfrac{2}{c}+\dfrac{1}{a}\right)=\dfrac{1}{3}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\le\dfrac{2\sqrt{303}}{3}\)

28 tháng 6 2021

hmmm-khó đấy

 

NV
28 tháng 6 2021

Đề bài hình như bị sai em, thay điểm rơi ko thỏa mãn

Biểu thức là \(a+b+\sqrt{2\left(a+c\right)}\) mới đúng

Source of Question: Câu hỏi của Hiếu Cao Huy - Toán lớp 9 | Học trực tuyến Xét pt (1): \(\Delta=b^2-4ac\) \(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}\); \(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}\) Xét pt (2) : \(\Delta=b^2-4ac\) \(y_1=\dfrac{-b+\sqrt{\Delta}}{2c}\) ; \(y_2=\dfrac{-b-\sqrt{\Delta}}{2c}\) Thay vào M:...
Đọc tiếp

Source of Question: Câu hỏi của Hiếu Cao Huy - Toán lớp 9 | Học trực tuyến

Xét pt (1): \(\Delta=b^2-4ac\)

\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}\); \(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}\)

Xét pt (2) : \(\Delta=b^2-4ac\)

\(y_1=\dfrac{-b+\sqrt{\Delta}}{2c}\) ; \(y_2=\dfrac{-b-\sqrt{\Delta}}{2c}\)

Thay vào M:

\(M=\dfrac{\left(-b+\sqrt{\Delta}\right)^2}{4a^2}+\dfrac{\left(-b-\sqrt{\Delta}\right)^2}{4a^2}+\dfrac{\left(-b+\sqrt{\Delta}\right)^2}{4c^2}+\dfrac{\left(-b-\sqrt{\Delta}\right)^2}{4c^2}\)

\(=\dfrac{b^2-2b\sqrt{\Delta}+\Delta}{4a^2}+\dfrac{b^2+2b\sqrt{\Delta}+\Delta}{4a^2}+\dfrac{b^2-2b\sqrt{\Delta}+\Delta}{4c^2}+\dfrac{b^2+2b\sqrt{\Delta}+\Delta}{4c^2}\)

\(=\dfrac{2b^2+2\Delta}{4a^2}+\dfrac{2b^2+2\Delta}{4c^2}=\dfrac{b^2+\Delta}{2a^2}+\dfrac{b^2+\Delta}{2c^2}=\dfrac{b^2c^2+\Delta c^2}{2a^2c^2}+\dfrac{a^2b^2+\Delta a^2}{2a^2c^2}\)

\(=\dfrac{b^2\left(a^2+c^2\right)+\Delta\left(a^2+c^2\right)}{2a^2c^2}=\dfrac{\left(b^2+\Delta\right)\left(a^2+c^2\right)}{2a^2c^2}=\dfrac{\left(b^2+b^2-4ac\right)\left(a^2+c^2\right)}{2a^2c^2}\)

\(=\dfrac{\left(2b^2-4ac\right)\left(a^2+c^2\right)}{2a^2c^2}=\dfrac{\left(b^2-2ac\right)\left(a^2+c^2\right)}{a^2c^2}=\dfrac{a^2b^2-2a^3c+b^2c^2-2ac^3}{a^2c^2}\)

\(=\dfrac{a^2b^2}{a^2c^2}+\dfrac{b^2c^2}{a^2c^2}-\dfrac{2a^3c}{a^2c^2}-\dfrac{2ac^3}{a^2c^2}=\dfrac{b^2}{c^2}+\dfrac{b^2}{a^2}-\dfrac{2a}{c}-\dfrac{2c}{a}\)

\(=\left(\dfrac{b^2}{c^2}-\dfrac{2ac}{c^2}\right)+\left(\dfrac{b^2}{a^2}-\dfrac{2ac}{a^2}\right)=\dfrac{b^2-2ac}{c^2}+\dfrac{b^2-2ac}{a^2}\)

\(=\left(b^2-2ac\right)\left(\dfrac{1}{c^2}+\dfrac{1}{a^2}\right)\)

Bài tập Toán

Thanks a lots for your answering ^^!

Hiếu Cao Huy: Wait together!

2
12 tháng 7 2017

M=\(\left(x_1+x_2\right)^2-2x_1.x_2+\left(y_1+y_2\right)^2-2y_1.y_2\)

Áp dụng định lý viettel :( :v )

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}\\x_1x_2=\dfrac{c}{a}\end{matrix}\right.\);\(\left\{{}\begin{matrix}y_1+y_2=-\dfrac{b}{c}\\y_1y_2=\dfrac{a}{c}\end{matrix}\right.\)

\(M=\dfrac{b^2}{a^2}-\dfrac{2c}{a}+\dfrac{b^2}{c^2}-\dfrac{2a}{c}=\dfrac{b^2-4ac}{a^2}+\dfrac{b^2-4ac}{c^2}+2\left(\dfrac{a}{c}+\dfrac{c}{a}\right)\)

\(\ge2\left(\dfrac{a}{c}+\dfrac{c}{a}\right)\ge4\)

Dấu = xảy ra: \(\left\{{}\begin{matrix}a=c\\b^2=4ac\end{matrix}\right.\)\(\Leftrightarrow b^2=4a^2=4c^2\)

12 tháng 7 2017

@_@ oho đưa thẳng câu hỏi luôn đi ; nói như zầy chưa nghỉ ra câu trả lời ; chống mặt chết trước rồi

từ giả thiết, ta có \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\) đặt \(\left(\dfrac{1}{xy};\dfrac{1}{yz};\dfrac{1}{zx}\right)=\left(a;b;c\right)\Rightarrow a+b+c=1\) =>\(\left(\dfrac{ac}{b};\dfrac{ab}{c};\dfrac{bc}{a}\right)=\left(\dfrac{1}{x^2};\dfrac{1}{y^2};\dfrac{1}{z^2}\right)\) ta có...
Đọc tiếp

từ giả thiết, ta có \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\)

đặt \(\left(\dfrac{1}{xy};\dfrac{1}{yz};\dfrac{1}{zx}\right)=\left(a;b;c\right)\Rightarrow a+b+c=1\) =>\(\left(\dfrac{ac}{b};\dfrac{ab}{c};\dfrac{bc}{a}\right)=\left(\dfrac{1}{x^2};\dfrac{1}{y^2};\dfrac{1}{z^2}\right)\)

ta có VT=\(\dfrac{1}{\sqrt{1+\dfrac{1}{x^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{y^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{z^1}}}=\sqrt{\dfrac{1}{1+\dfrac{ac}{b}}}+\sqrt{\dfrac{1}{1+\dfrac{ab}{c}}}+\sqrt{\dfrac{1}{1+\dfrac{bc}{a}}}\)

=\(\dfrac{1}{\sqrt{\dfrac{b+ac}{b}}}+\dfrac{1}{\sqrt{\dfrac{a+bc}{a}}}+\dfrac{1}{\sqrt{\dfrac{c+ab}{c}}}=\sqrt{\dfrac{a}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{b}{\left(b+c\right)\left(b+a\right)}}+\sqrt{\dfrac{c}{\left(c+a\right)\left(c+b\right)}}\)

\(\le\sqrt{3}\sqrt{\dfrac{ac+ab+bc+ba+ca+cb}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=\sqrt{3}.\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)

ta cần chứng minh \(\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\le\dfrac{3}{2}\Leftrightarrow\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{9}{4}\Leftrightarrow8\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

<=>\(8\left(a+b+c\right)\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\) (luôn đúng )

^_^

0
2 tháng 4 2022

Dễ dàng c/m : \(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}=1\)

Ta có : \(\dfrac{1}{\sqrt{2\left(a^2+b^2\right)}+4}\le\dfrac{1}{a+b+4}\le\dfrac{1}{4}\left(\dfrac{1}{a+2}+\dfrac{1}{b+2}\right)\) 

Suy ra : \(\Sigma\dfrac{1}{\sqrt{2\left(a^2+b^2\right)}+4}\le2.\dfrac{1}{4}\left(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}\right)=\dfrac{1}{2}.1=\dfrac{1}{2}\) 

" = " \(\Leftrightarrow a=b=c=1\)

2 tháng 4 2022

 Dạ em cám ơn nhiều lắm ạ

 

AH
Akai Haruma
Giáo viên
8 tháng 3 2021

Bài 1:

Áp dụng BĐT AM-GM ta có:

$\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\geq 3\sqrt[3]{\frac{1}{(a+1)(b+1)(c+1)}}$

$\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\geq 3\sqrt[3]{\frac{abc}{(a+1)(b+1)(c+1)}}$

Cộng theo vế và thu gọn:

$\frac{a+1}{a+1}+\frac{b+1}{b+1}+\frac{c+1}{c+1}\geq \frac{3(1+\sqrt[3]{abc})}{\sqrt[3]{(a+1)(b+1)(c+1)}}$

$\Leftrightarrow 3\geq \frac{3(1+\sqrt[3]{abc})}{\sqrt[3]{(a+1)(b+1)(c+1)}}$

$\Rightarrow (a+1)(b+1)(c+1)\geq (1+\sqrt[3]{abc})^3$

Ta có đpcm.

AH
Akai Haruma
Giáo viên
8 tháng 3 2021

Bài 2:

$a^3+a^3+a^3+a^3+b^3+c^3\geq 6\sqrt[6]{a^{12}b^3c^3}=6a^2\sqrt{bc}$

$b^3+b^3+b^3+b^3+a^3+c^3\geq 6b^2\sqrt{ac}$

$c^3+c^3+c^3+c^3+a^3+b^3\geq 6c^2\sqrt{ab}$

Cộng theo vế và rút gọn thu được:

$a^3+b^3+c^3\geq a^2\sqrt{bc}+b^2\sqrt{ac}+c^2\sqrt{ab}$ 

Ta có đpcm.

Dấu "=" xảy ra khi $a=b=c$