K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2016

\(3x^2+x=4y^2+y\)

\(\Leftrightarrow\left(3x^2-3y^2\right)+\left(x-y\right)=y^2\)

\(\Leftrightarrow\left(x-y\right)\left(3x+3y+1\right)=y^2\)

Giả sử d là ước chung của (x - y) và (3x + 3y + 1)

Ta có ychia hết cho d2

\(\Rightarrow\)y chia hết cho d

\(\Rightarrow-3\left(x-y\right)+\left(3x+3y+1\right)-6y\)chia hết cho d

\(\Rightarrow\)1 chia hết cho d nên d = 1

\(\Rightarrow\)(x - y) và (3x + 3y + 1) nguyên tố cũng nhau

Vậy (x - y) là 1 số chính phương

29 tháng 12 2016

tao chắc chắn, chắc chắn..... là tao không biết

NV
2 tháng 1

Từ giả thiết:

\(3x^2+x=4y^2+y\Leftrightarrow\left(3x-4y\right)^2=12x^2+12y^2-24xy+\left(x-y\right)\)

\(\Leftrightarrow\left(3x-4y\right)^2=12\left(x-y\right)^2+\left(x-y\right)=\left(x-y\right)\left[12\left(x-y\right)+1\right]\)

Hiển nhiên ta có \(12\left(x-y\right)+1\) và \(x-y\) nguyên tố cùng nhau

Mà tích của chúng là 1 SCP \(\Rightarrow\) cả 2 số đều phải là SCP

 

Hay \(x-y\) là SCP

 

8 tháng 3 2021

đề bài có nhầm ko bạn

9 tháng 3 2021

ko nhầm đâu bạn

19 tháng 9 2016

thtfgfgfghggggggggggggggggggggg

4 tháng 8 2017

\(x^2+y^2+4=2xy+4x+4y\)

\(\Leftrightarrow x^2-\left(2y+4\right)x+y^2-4y+4=0\)

Xét phương trình theo nghiệm x.

\(\Rightarrow\Delta'=\left(y+2\right)^2-\left(y^2-4y+4\right)=8y\)

\(\Rightarrow\orbr{\begin{cases}x=y+2-2\sqrt{2y}\\x=y+2+2\sqrt{2y}\end{cases}}\)

Vì x, y nguyên dương nên 

\(\Rightarrow\sqrt{2y}=a\)

\(\Rightarrow y=2n^2\)

\(\Rightarrow\orbr{\begin{cases}x=2n^2+2-4n\\x=2n^2+2+4n\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\left(n-1\right)^2\\x=2\left(n+1\right)^2\end{cases}}\)

Vậy \(\frac{y}{2};\frac{x}{2}\)là 2 số chính phương.

4 tháng 8 2017

\(x^2+y^2+4=2xy+4x+4y\)

<=> \(\left(x^2-4x+4\right)+y^2-2y\left(x-2\right)=8y\)

<=> \(\left(x-y-2\right)^2=8y\)

<=> \(\left(\frac{x-y-2}{4}\right)^2=\frac{y}{2}\)

=> \(\frac{y}{2}\)là số chính phương

CMTT x/2 là số chính phương