K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2016

3) 2x3-1=15 <=> x3=16/2=8=23 => x=2

\(\frac{x+16}{9}=\frac{y-25}{16}=\frac{z+9}{25}=\frac{x+16+y-25+z+9}{9+16+25}=\frac{x+y+z}{50}\)

=> \(\frac{x+16}{9}=\frac{x+y+z}{50}\)=> x+y+z=\(\frac{50\left(x+16\right)}{9}\)=\(\frac{50\left(2+16\right)}{9}=\frac{50.18}{9}=50.2=100\)

Vậy x+y+z=100

27 tháng 12 2016

Mọi người giúp tôi ik mai tôi phải thi rồi !

16 tháng 7 2017

Ta có:

 \(\frac{x^2}{y^2}=\frac{2y}{y^2}=\frac{-2y}{Y}\)

15 tháng 7 2017

\(\frac{x^2+2y^1}{300}=\frac{x^2+2y^1}{294}\) 

Áp dụng tính chất dãy tỉ số bằng nhau , ta có:

\(\frac{x^2+2y^1}{300}=\frac{x^2+2y}{294}=\frac{x^2+2y^1-x^2-2y^1}{300-294}=\frac{0}{6}=0\) 

\(\Rightarrow x^2+2y=0\) 

\(\Rightarrow x^2=-2y\) 

Ta có:

\(\frac{x^2}{y^2}=\frac{-2y}{y^2}=\frac{-2}{y}\)

3 tháng 1 2017

\(P=\frac{1}{2000.1999}+\frac{1}{1999.1998}+...+\frac{1}{3.2}+\frac{1}{2.1}\)

\(=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1998.1999}+\frac{1}{1999.2000}\)

\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1998}-\frac{1}{1999}+\frac{1}{1999}-\frac{1}{2000}\)

\(=\frac{1}{2}-\frac{1}{2000}=\frac{999}{2000}\)

3 tháng 1 2017

\(P=\frac{1}{2000.1999}+\frac{1}{1999.1998}+..+\frac{1}{3.2}+\frac{1}{2.1}\)

=\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1998.1999}+\frac{1}{1999.2000}\)

=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..+\frac{1}{1999}-\frac{1}{2000}\)

=\(1-\frac{1}{2000}\)

=\(\frac{1999}{2000}\)

13 tháng 2 2017

Số hạng đầu tiên không theo quy luật hả (+) hày (-) đề thế nào làm vậy:

\(P=\frac{1}{2000.1998}-\left(\frac{1}{1.2}+\frac{1}{2.3}+..+\frac{1}{1998.1999}\right)=\frac{1}{1999.2000}-Q\)

Tổng quát ta có \(\frac{1}{a}-\frac{1}{b}=\frac{b-a}{ab}\) với dãy trên ta luôn có b-a=1

\(Q=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1998}-\frac{1}{1999}=1-\left(\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{1}{3}-\frac{1}{3}\right)-.....-\frac{1}{1999}\)

\(Q=1-\frac{1}{1999}\Rightarrow P=\frac{1}{1999.2000}-1+\frac{1}{1999}=\frac{1-1999.2000+2000}{1999.2000}=\frac{1-1998.2000}{1999.2000}\)

\(P+\frac{1997}{1998}=\frac{1997}{1998}+\frac{1-1998.2000}{1999.2000}\) xem lại đề

29 tháng 12 2016

Hôm kia giải thi chơi được 260, làm được bài này luôn. Hôm sau, làm lại chả biết làm.

27 tháng 1 2017

\(\Rightarrow P=\frac{1}{2000.1999}-\left(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{1998.1999}\right)\)

\(=\frac{1}{2000.1999}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1998}-\frac{1}{1999}\right)\)

\(=\frac{1}{2000.1999}-\left(1-\frac{1}{1999}\right)\)

\(=\frac{1}{1999.2000}-\frac{1998}{1999}\)

\(\Rightarrow P+\frac{1997}{1999}=\frac{1}{1999.2000}-\frac{1998}{1999}+\frac{1997}{1999}\)

\(=\frac{-1}{2000}\)

27 tháng 1 2017

P= \(\frac{1}{2000.1999}\)-  (\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1998.1999}\))

  = \(\frac{1}{1999}-\frac{1}{2000}\)- (\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1998}-\frac{1}{1999}\))

  = \(\frac{1}{1999}-\frac{1}{2000}\)- ( \(1-\frac{1}{1999}\))

  = \(\frac{1}{1999}-\frac{1}{2000}-\frac{1998}{1999}\)

  = \(\frac{-1997}{1999}-\frac{1}{2000}\)

 =) P + \(\frac{1997}{1999}\)\(\frac{-1997}{1999}-\frac{1}{2000}+\frac{1997}{1999}=\frac{-1}{2000}\)

1 tháng 1 2017

Ta có:

\(P=\frac{1}{2000.1999}-\frac{1}{1999.1998}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(\Rightarrow P=\frac{1}{1999.2000}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1998.1999}\right)\)

\(\Rightarrow P=\frac{1}{1999.2000}-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1998}-\frac{1}{1999}\right)\)

\(\Rightarrow P=\frac{1}{1999.2000}-\left(1-\frac{1}{1999}\right)\)

\(\Rightarrow P=\frac{1}{1999.2000}-\frac{1998}{1999}\)

\(\Rightarrow P=\frac{1}{1999}-\frac{1}{2000}-\frac{1998}{1999}\)

\(\Rightarrow P=\left(\frac{1}{1999}-\frac{1998}{1999}\right)-\frac{1}{2000}\)

\(\Rightarrow P=\frac{-1997}{1999}-\frac{1}{2000}\)

\(\Rightarrow P+\frac{1997}{1999}=\frac{-1997}{1999}-\frac{1}{2000}+\frac{1}{1997}\)

\(\Rightarrow P+\frac{1997}{1999}=\frac{-1}{2000}\)

Vậy....

27 tháng 12 2016

Áp dụng tính chất dãy tỉ số bằng  nhau \(\Rightarrow\)\(\frac{x^2+2y^2}{300}\)=\(\frac{x^2-2y^2}{294}\)=\(\frac{x^2+2y^2+x^2-2y^2}{300+294}\)=\(\frac{2x^2}{594}\)=\(\frac{x^2}{297}\)

Lại có:\(\frac{x^2+2y^2}{300}\)=\(\frac{x^2}{297}\)=\(\frac{x^2+2y^2-x^2}{300-297}\)=\(\frac{2y^2}{3}\)

\(\Rightarrow\)3\(x^2\)=297.2\(y^2\)\(\Rightarrow\)3\(x^2\)=594\(y^2\)\(\Rightarrow\)\(\frac{x^2}{y^2}\)=\(\frac{594}{3}\)=198

27 tháng 12 2016

Vì mình mới học lớp 6

Nên không biết nha

Chuc các bạn học giỏi

27 tháng 12 2016

Chia cả 2 vế cho y2, ta được:

294(x2/y2+2)=300(x2/y2-2)

<=> 6x2/y2=2.294+2.300=1188 => \(\frac{x^2}{y^2}\frac{1188}{6}=198\)

6 tháng 3 2017

mơn bn nhìu na!!!

6 tháng 3 2017

uk, ko có chi. mà để cho mn tham khảo lun

31 tháng 12 2016

Nguyễn Huy Thắng

Trần Việt Linh

Trương Hồng Hạnh

31 tháng 12 2016

khỏi cần nx nhé!