với n thuộc z các số sau là chẵn hay lẻ
(3n - 4 )(3n + 19)
n2-n+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, vì n, n+1 là hai số nguyên liên tiếp
=> có một số chẵn
=> tích chúng là 1 số chẵn
b, vì n thuộc Z nên 3n-4;3n+19 cũng thuộc Z
Vì hai thừa số đều mang tính chẵn ; lẻ
=> tích chúng là số chẵn
c, n^2-n+1
=> n(n-1)+1
Mà n; n-1 là 2 số nguyên liên tiếp
=> sẽ có 1 số chẵn => n(n-1) là chẵn => n(n-1)+1 là số lẻ
=> n^2-n+1 là lẻ
2.
nếu a = 3
thì ta có (3 - 1) . (3 + 2) + 12 =2 . 5 + 12 = 10+ 12 = 22 mà 22 không chia hết cho 9 =>
(a-1).(a+2) + 12 không là bội của 9
Ta thấy: a)Lẻ x Lẻ = Lẻ
Chẳn nhân vói số nguyên nào cũng là chẵn
b) Chẵn + Lẻ = Lẻ
Chẵn + Chẵn = Chẵn
Lẻ + Lẻ = Chẵn
a) Nếu n chẵn thì \(n=2k\left(k\in Z\right)\)
Khi đó \(n-6=2k-6\)là số chẵn
\(\left(n+3\right)\left(n-6\right)\)là số chẵn với n chẵn (1)
Nếu n lẻ thì\(n=2k+1\left(k\in Z\right)\)
Khi đó \(n+3=2k+1+3=2k+4\)là số chẵn
\(\left(n+3\right)\left(n-6\right)\)là số chẵn với n lẻ (2)
Từ (1) và (2) => (\(\left(n+3\right)\left(n-6\right)\)là số chẵn với mọi n
b) Nếu n chẵn thì \(n=2k\left(k\in Z\right)\)
Khi đó \(n^2-3n+3=4k^2-6k+3=2\left(2k^2-3k\right)+3\)là số lẻ
Nếu n lẻ thì \(n=2k+1\left(k\in Z\right)\)
Khi đó \(n^2-3n+3=\left(2k+1\right)^2-3\left(2k+1\right)+3\)
\(=4k^2+4k+1-6k-3+3\)
\(=4k^2-2k+1\)
\(=2k\left(2k-1\right)+1\)là số lẻ
Vậy \(n^2-3n+3\)là số lẻ với mọi n
Lời giải:
a. Nếu $n$ chẵn thì $n-4$ chẵn
$\Rightarrow (n-4)(5n+13)$ chẵn
Nếu $n$ lẻ thì $5n$ lẻ. Mà 13 lẻ nên $5n+13$ chẵn.
$\Rightarrow (n-4)(5n+13)$ chẵn.
Vậy $(n-4)(5n+13)$ chẵn với mọi $n\in\mathbb{Z}$
b.
Ta thấy $n^2-n=n(n-1)$ chẵn với mọi $n\in\mathbb{Z}$ do $n(n-1)$ là tích 2 số nguyên liên tiếp.
$\Rightarrow n^2-n+3=n(n-1)+3$ lẻ với mọi $n\in\mathbb{Z}$
(3n - 3)(3n + 19)
Vì n \(\in\)Z nên 3n - 4; 3n + 19 cũng \(\in\)Z
Vì 2 thừa số đều mang tính chất chẵn;lẻ
\(\Rightarrow\)Tích chúng là số chẵn
n2 - n + 1
\(\Rightarrow\)n( n - 1 ) + 1
Mà n ; n - 1 là 2 số nguyên liên tiếp
\(\Rightarrow\)Sẽ có 1 số chẵn \(\Rightarrow\)n( n - 1 ) là chẵn \(\Rightarrow\)n( n + 1 ) là số lẻ
\(\Rightarrow\)n2 - n + 1 là số lẻ
n^2-n+1= n(n-1) +1
mà n, n-1 là 2 số nguyên liên tiếp => n(n-1) là số chẵn=> n(n-1) +1 là số lẻ
CMTT (3n-4)(3n+19) là chẵn