K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2016

Đề không thiếu. Ở đây x^2, y^2 rồi.

mình không côsi là cô của ai

​x^2+y^2-2xy=(x-y)^2>=0 mọi xy

=>20-2xy​>=0 mọi xy

​=>xy<=10

​P=(x^2+y^2)/xy=2/xy>=2/10=1/5

28 tháng 12 2016

đề thiếu : phải có x,y > 0

áp dụng bđt Cô-si ta có: x^2+y^2 >= 2 \(\sqrt{ }\)(xy)^2=2xy

P=1/x^2 + 1/y^2 = (x^2+y^2)/(xy)^2 >= 2xy/(xy)^2=2/xy (1)

dấu "=" xảy ra <=> x^2=y^2,mà x^2+y^2=20 => 2x^2=20=>x^2=10=>x = căn 10 => y= căn 10

Thay x=y=căn 10 vào (1) ta có P >= 2/10=1/5

Vậy minP=1/5

(ko chắc) 

16 tháng 1 2018

\(A=-x^2-y^2+xy+2x+2y\\ =-2x^2-2y^2+2xy+4x+4y\\ =\left(-x^2+2xy-y^2\right)+\left(-x^2+4x-4\right)+\left(-y^2+4y-4\right)+8\\ =-\left(x^2-2xy+y^2\right)-\left(x^2-4x+4\right)-\left(y^2-4y+4\right)+8\\ =-\left(x-y\right)^2-\left(x-2\right)^2-\left(y-2\right)^2+8\\ =-\left[\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2\right]+8\\ \left(x-y\right)^2\ge0\forall x,y;\left(x-2\right)^2\ge0\forall x;\left(y-2\right)^2\ge0\forall y\\ \Rightarrow\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2\ge0\\ \Leftrightarrow-\left[\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2\right]\le0\\ \Leftrightarrow-\left[\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2\right]+8\le8\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(x-2\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-y=0\\x-2=0\\y-2=0\end{matrix}\right.\\ \Leftrightarrow x=y=2\)

Vậy \(MAX_A=8\text{ khi }x=y=2\)

18 tháng 2 2019

do nghiệm của pt -2x2-2y2+2xy+4x+4y=0 không phải là nghiệm của

pt -x2-y2+xy+2x+2y= 0 nên MAX A KHÔNG THỂ BÀNG 8 KHI x=y=2

7 tháng 3 2021

Theo bài ra, ta có: \(x^2-y=y^2-x\Leftrightarrow x^2-y^2=-x+y\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)=-\left(x-y\right)\)

\(\Leftrightarrow\left(x+y\right)=-1\)

Ta lại có: \(A=x^2+2xy+y^2-3x-3y=\left(x+y\right)^2-3\left(x+y\right)\)

Thay x+y=-1 vào biểu thức A, ta được: \(A=\left(-1\right)^2-3.\left(-1\right)=1+3=4\)

Vậy A=4

7 tháng 3 2021

tks nguoi ae

26 tháng 10 2017

A=\(x^2-\frac{1}{3}x+1=x^2-2.\frac{1}{6}.x+\frac{1}{36}-\frac{1}{36}+1\)

\(=\left(x+\frac{1}{6}\right)^2+\frac{35}{36}\)

Do \(\left(x+\frac{1}{6}\right)^2\ge0\)nên \(\left(x+\frac{1}{6}\right)^2+\frac{35}{36}>0\)và GTNN của A là  \(\frac{35}{36}\)

26 tháng 10 2017

hình như cái khúc (x+1/2)^2 phải là (x-1/2)^2 chứ bạn mk k hỉu rõ bạn giải thích giùm mk nhé

1 tháng 2 2017

GIá trị nhỏ nhất của biểu thức B là 1.

1 tháng 2 2017

giá trị nhỏ nhất của B là 1 

16 tháng 11 2017

vì x và y là hai đại lượng tỉ lệ nghịch

 ta có:             X1 x Y1=X2 x Y2  

                hay  

9 tháng 12 2017

anh đẹp trai