chứng tỏ rằng các p/số sau tối giản với mọi số tự nhiên n
a) (n+1)/(2n+3)
b) (2n+3)/(4n+8)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi d = ƯCLN(n+1; 2n+3) (d thuộc N*)
=> n + 1 chia hết cho d; 2n + 3 chia hết cho d
=> 2.(n + 1) chia hết cho d; 2n + 3 chia hết cho d
=> 2n + 2 chia hết cho d; 2n + 3 chia hết cho d
=> (2n + 3) - (2n + 2) chia hết cho d
=> 2n + 3 - 2n - 2 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(n+1; 2n+3) = 1
=> n + 1 và 2n + 3 là 2 số nguyên tố cùng nhau
Câu b lm tương tự
a) Đặt ƯCLN(n+1; 2n+3) = d
=> (2n + 3) - (n + 1) chia hết cho d
=> (2n + 3) - [2.(n + 1)] chia hết cho d
=> (2n + 3) - (2n + 2) chia hết cho d
=> 1 chia hết cho d => d = 1
Do ƯCLN(n+1; 2n+3) = 1 nên \(\frac{n+1}{2n+3}\) tối giản
b) Đặt ƯCLN(2n+3; 4n+8) = d
=> (4n + 8) - (2n + 3) chia hết cho d
=> (4n + 8) - [2.(2n + 3)] chia hết cho d
=> (4n + 8) - (4n + 6) chia hết cho d
=> 2 chia hết cho d => d \(\in\) {1; 2}
Nhưng d khác 2 vì d là ước chung của 2 số lẻ nên d = 1
Do ƯCLN(2n+3; 4n+8) = 1 nên \(\frac{2n+3}{4n+8}\) tối giản
a) \(\frac{n+1}{2n+3}\)
Đặt ƯCLN(n+1; 2n+3) = d
=> n + 1 \(⋮d\) và 2n + 3 \(⋮d\)
=> (2n + 3) - (n + 1) \(⋮d\)
=> (2n + 3) - [2.(n + 1)] \(⋮d\)
=> (2n + 3) - (2n + 2) \(⋮d\)
=> 1 \(⋮d\)
=> d = 1
Do ƯCLN(n+1; 2n+3) = 1 nên phân số \(\frac{n+1}{2n+3}\) tối giản
b) \(\frac{2n+3}{4n+8}\)
Đặt ƯCLN(2n+3;4n+8) = d
=> 2n+3 \(⋮d\) và 4n+8\(⋮d\)
=> (4n + 8) - (2n + 3) \(⋮d\)
=> (4n + 8) - [2.(2n + 3)] \(⋮d\)
=> (4n + 8) - (4n + 6) \(⋮d\)
=> 2 chia hết cho d
=> d ∈ ∈ {1; 2}
Vì 2n + 3 là số lẻ, 4n + 8 là số chẵn nên ƯC(2n+3;4n+8) là 1 số lẻ
=> \(d\ne2\Rightarrow d=1\)
Do ƯCLN(2n+3; 4n+8) = 1 nên phân số \(\frac{2n+3}{4n+8}\) tối giản
a. Muốn phân số n+1/2n+3 tối giản thì n+1 và 2n+3 có ƯCLN=1
Giả sử n+1 và 2n+3 có ước là a
=>n+1 chia hết cho a và 2n+3 chia hết cho
=>2(n+1) chia hết cho a và 2n+3 chia hết cho a
=>2n+2 chia hết cho a và 2n+3 chia hết cho a
=>(2n+3)-(2n+2) chia hết cho a
=> 1 chia hết cho a hay a thuộc Ư(1) = {1}
Vậy phân số n+1/2n+3 tối giản
Bây giờ mk bận, tối về giải tiếp nhé
Gợi Ư CLN\(\left(2n+3;4n+8\right)=d\)
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\Rightarrow2.\left(2n+3\right)⋮d\Rightarrow4n+6⋮d\\4n+8⋮d\end{cases}}\)
\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\Rightarrow d=1;2\)
\(+d=2\Rightarrow2n+3⋮2\)
Mak 2n+3 ko chia hết cho 2
\(\Rightarrow d\ne2\)
\(\Rightarrow d=1\)
\(\Rightarrowđpcm\)
Giả sử phân số sau chưa tối giản
\(\Rightarrow2n+3⋮d;4n+8⋮d\left(d\in N;d>1\right)\)
\(2n+3⋮d\Rightarrow4n+6⋮d\)
\(\Rightarrow4n+8-4n-6⋮d\)
\(\Rightarrow2⋮d\)
Vậy d có thể = 2
Vậy p/s sau vẫn có thể tối giản đc
Giả sử ƯCLN (2n+3;4n+8)=d
\(\Rightarrow4n+8⋮d\)mà\(4n+8=2\left(2n+4\right)\)\(\Rightarrow2n+4⋮d\)
\(\Rightarrow d=2n+4-\left(2n+3\right)\)\(=2n+4-2n-3\)\(=1\)
Do d=1 thì \(\frac{2n+3}{4n+8}\)là số tối giản với bất kì số tư nhiên n
Chú bạn hok tốt
c) Gọi ƯCLN(4n + 3;5n+4) = d
=> \(\hept{\begin{cases}4n+3⋮d\\5n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(4n+3\right)⋮d\\4\left(5n+4\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}20n+15⋮d\\20n+16⋮d\end{cases}\Rightarrow}20n+16-\left(20n+15\right)⋮d\Rightarrow1⋮d}\)
=> d = 1
=> 4n + 3 ; 5n + 4 là 2 số nguyên tố cùng nhau
=> \(\frac{4n+3}{5n+4}\)là phân số tối giản
d) Gọi ƯCLN(n+1;2n + 3) = d
=> \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}\Rightarrow}2n+3-\left(2n+2\right)⋮d\Rightarrow1⋮d\Rightarrow d=1}\)
=> n + 1 ; 2n + 3 là 2 số nguyên tố cùng nhau
=> \(\frac{n+1}{2n+3}\)là phân số tối giản
f) Gọi ƯCLN(3n + 2;5n + 3) = d
=> \(\hept{\begin{cases}3n+2⋮d\\5n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(3n+2\right)⋮d\\3\left(5n+3\right)⋮d\end{cases}\Rightarrow}\begin{cases}15n+10⋮d\\15n+9⋮d\end{cases}\Rightarrow15n+10-\left(15n+9\right)⋮d\Rightarrow1⋮d}\)
=> d = 1
=> 3n + 2 ; 5n + 3 là 2 số nguyên tố cùng nhau
=> \(\frac{3n+2}{5n+3}\)là phân số tối giản
a) Gọi ƯCLN(n + 3;n + 4) = d
=> \(\hept{\begin{cases}n+3⋮d\\n+4⋮d\end{cases}\Rightarrow n+4-\left(n+3\right)⋮d\Rightarrow1⋮d\Rightarrow d=1}\)
=> n + 3 ; n + 4 là 2 số nguyên tố cùng nhau
=> \(\frac{n+3}{n+4}\)là phân số tối giản
b) Gọi ƯCLN(3n + 3 ; 9n + 8) = d
Ta có : \(\hept{\begin{cases}3n+3⋮d\\9n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(3n+3\right)⋮d\\9n+8⋮d\end{cases}}\Rightarrow\hept{\begin{cases}9n+9⋮d\\9n+8⋮d\end{cases}}\Rightarrow9n+9-\left(9n+8\right)⋮d\Rightarrow1⋮d\Rightarrow d=1}\)
=> 3n + 3 ; 9n + 8 là 2 số nguyên tố cùng nhau
=> \(\frac{3n+3}{9n+8}\)phân số tối giản
a)Gọi d là ƯCLN(n+1;2n+3)
=>2n+3 chia hết cho d
n+1 chia hết cho d
=>(2n+3)-(n+1)=n+2 chia hết cho d
Do n+1 và n+2 là 2 số nguyên liên tiếp mà d là ước chung của 2 số đó => d=1
=>2n+3 và n+1 là 2 số nguyên tố cùng nhau => phân số \(\frac{n+1}{2n+3}\) tối giản
b) làm tương tự cũng xét hiệu như thế nha!
a,
gọi d là ƯCLN của \(\frac{n+1}{2n+3}\)ta có:
\(\text{(2n+3)-(n-1) ⋮d}\)
\(\Rightarrow\left(2n+3\right)-2\left(n+1\right)⋮d\)
\(\Rightarrow2n+3-2n-2⋮d\)
\(\Rightarrow2n-2n+3-2⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
vậy \(\frac{n+1}{2n+3}\)là p/s tối giản với mọt số tự nhiên n