K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2016

A B C M D E F

Hình mik vẽ không có đo nên các trung điểm mik lấy đại, có thể hơi lêch một tí.

a,  Xét tam giác ABM và tam giác DCM

Ta có: AM = DM ( giả thiết)

          góc AMB = góc AMC ( đối đỉnh)

          BM = CM ( M là trung điểm BC)

Do đó: tam giác ABM = tam giác DCM ( c-g-c)

b, Ta có: tam giác ABM = tam giác DCM ( chứng minh trên)

            góc ABM = góc DCM

Mà hai góc này nằm ở vị trí so le trong.

Suy ra: AB // CD

c,Xét tam giác BEM và tam giác CFM

Ta có: góc EMB = góc FMC ( đối đỉnh)

              BM = CM ( M là trung điểm BC)

             góc BEM = góc CFM = 90 độ ( BE vuông góc AM, CF vuông góc DM)

Do đó: tam giác BEM = tam giác CFM( cạnh huyền, góc nhọn)

Suy ra:                EM = FM

Mà E, F, M thẳng hàng ( cùng thuộc AD)

Vậy M là trung điểm EF.

a: Xét ΔMAB và ΔMDC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔMAB=ΔMDC

=>\(\widehat{MAB}=\widehat{MDC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CD

b: Xét ΔEMB vuông tại E và ΔFMC vuông tại F có

MB=MC

\(\widehat{EMB}=\widehat{FMC}\)(hai góc đối đỉnh)

Do đó: ΔEMB=ΔFMC

=>EM=FM

=>M là trung điểm của EF

19 tháng 12 2016

A B C D E F M

a) Xét ΔABM và ΔDCM có:

BM=CM(gt)

\(\widehat{AMB}=\widehat{DMC}\left(đđ\right)\)

AM=DM(gt)

=>ΔABM=ΔDCM(c.g.c)

b) Vì ΔABM=ΔDCM(cmt)

=>\(\widehat{ABM}=\widehat{DCM}\). Mà hai góc này pử vị trí sole trong

=>AB//DC

c)Xét ΔEBM và ΔFCM có:

\(\widehat{BEM}=\widehat{CFM}=90^o\)

BM=MC(gt)

\(\widehat{BME}=\widehat{CMF}\left(đđ\right)\)

=>ΔEBM=ΔFCM( cạnh huyền-góc nhọn)

=>ME=MF

=>M là trung điểm của EF

31 tháng 5 2017

2015-12-20_100918

a) Xét ΔABM và ΔDCM, có:

MB = MC (gt)

∠AMB = ∠DCM (đối đỉnh)

MA = MD (gt)

Vậy ΔABM = ΔDCM (c-g-c)

b) Từ ΔABM = ΔDCM (chứng minh câu a)

Suy ra: ∠ABM = ∠ DCM (hai góc tương ứng)

Mà hai góc ∠ABM và ∠DCM ở vị trí so le trong

Vậy AB // DC

c) Xét ΔBEM và ΔCFM (∠E = ∠F = 90º)

Có: MB = MC (gt)

∠AMB = ∠DMC (đối đỉnh)

Do đó: ΔBEM = ΔCFM (cạnh huyền-góc nhọn)

Suy ra: ME = MF (hai cạnh tương ứng)

Vậy M là trung điểm của EF

14 tháng 12 2016

ai tl dùm cái

27 tháng 12 2016

Bạn tự vẽ hình nhá :/

a)Ta có:

AM là trung tuyến đồng thời là đường cao của tg ABC cân tại A (gt)

=> góc AMB =góc AMC =góc DMB =góc DMC =90*

Xét tg ABM và tg DMC ta có:

AM=DM (gt)

g AMB =g DMC =90* (cmt)

MB =MC (M là tđ BC)

=> tg AMB =tg DMC (c.g.c)

b)Vì AMB =DMC (cmt)

=> g ABM =g DMC (yếu tố tương ứng /yttư)

Mà 2 góc này ở vị trí so le trong

=> AB//CD

c)Vì AM là đường cao của tg ABC (ghi ở đầu bài rồi :/)

=> AM_|_BC

d)Theo đề bài, ta có:

g ABC =g ACB =30* (tg ABC cân)

Mà g A+g B+g C =180* (tổng 3 g trong 1 tg)

=> g A=180*-g B-g C=180*-30*-30*=120*

Vậy, nếu tg ABC có g A=120* thì g ABC=30*

16 tháng 12 2018

a/                       - AB = AC ( gt )

ABM = ACM vì {  - AM chung 

     (c.c.c)            - MB = MC ( m là trung điểm )

b/ AB // DC k phải AB // BC 

T/g ABM = t/g DCM ( c.g.c)

AM = DM ( gt )

Góc AMB = DMC ( đđ )

BM = CM ( gt )

Có ABM = DCM ( t/g ABM = t/g DCM )

Lại ở vị trí slt 

=> AB // DC

c/ 

AB = AC ( gt )

=> ABC cân tại A

Có AM là trung tuyến ( m là trug điểm )

=> AM là đường cao ABC 

=> AM vuông góc BC 

28 tháng 12 2016

A B C D M

a,Xét \(\Delta ABM\) và  \(\Delta DCM\) ta có :

\(AM=MD\left(gt\right)\)

\(\widehat{AMB}=\widehat{DMC}\)( đối đỉnh )

\(BM=MC\left(gt\right)\)

\(\Rightarrow\Delta ABM=\Delta DCM\left(c.g.c\right)\)

b, Vì \(\Delta ABM=\Delta DCM\)( Câu a )

\(\Rightarrow\widehat{ABM}=\widehat{DCM}\)( 2 góc tương ứng )

Mà 2 góc này ở vị trí so le trong nên :

=> AB // DC 

c, Ta có : AM là trung tuyến đông thời cũng là đường cao của tam giác ABC cân tại A;

\(\Rightarrow AM⊥BC\)

câu d bn tự làm nha