K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: ΔOAB cân tại O

mà OI là trung tuyến

nên OI vuông góc AB

góc OIM=góc OCM=góc ODM=90 độ

=>O,I,M,D,C cùng thuộc đường tròn đường kính OM

góc DIM=góc MOD

góc CIM=góc COM

mà góc COM=góc DOM

nên góc DIM=góc CIM

=>IM là phân giác của góc CID

13 tháng 5 2017

Với hai điểm (phân biệt) trên một đường tròn ta có được 2 cung có mút là hai điểm đó. Với n điểm (phân biệt) cho trước trên một đường tròn, thì cứ lấy 2 trong số n điểm đó ta được 2 cung, vì vậy có tất cả n(n-1) cung trên đường tròn đó.

6 tháng 5 2017

Giả sử vẽ được như hình bs.18

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

Với hai điểm (phân biệt) trên một đường tròn ta có được hai cung có mút là hai điểm đó. Với n điểm (phân biệt) cho trước trên một đường tròn, thì cứ lấy 2 trong số n điểm đó ta được 2 cung, vì vậy có tất cả n(n – 1) cung trên đường tròn đó.

1:

Xét (O) có

ΔAMB nội tiếp

AB là đường kính

Do đó: ΔAMB vuông tại M

=>AM vuông góc BC tại M

ΔCAB vuông tại A có AM là đường cao

nên CA^2=CM*CB

2:

D,M,B,E cùng thuộc (O)

=>DMBE nội tiếp

=>góc MDE+góc MBE=180 độ

=>góc CDM=góc CBE

Xét ΔCDM và ΔCBE có

góc CDM=góc CBE

góc DCM chung

Do đó: ΔCDM đồng dạng với ΔCBE

=>CD/CB=CM/CE

=>CD*CE=CM*CB

3: ΔOAK cân tại O

mà OH là đường cao

nên OH là phân giác của góc AOK

Xét ΔCAO và ΔCKO có

OA=OK

góc COA=góc KOC

OC chung

Do đó: ΔCAO=ΔCKO

=>góc CKO=90 độ

=>CK là tiếp tuyến của (O)

29 tháng 5 2021

a) Tứ giác PDKI nọi tiếp đườngtròn đường kính PK.

b) Ta có \(\Delta CIK\sim\Delta CDP(g.g)\) nên \(CI.CP=CK.CD\).

c) Giả sử Q nằm trên cung nhỏ AB.

Khi đó Q là điểm chính giữa của cung nhỏ AB nên IQ là phân giác của góc AIB. Lại có IC vuông góc với IQ nên IC là phân giác ngoài của tam giác IAB.

b) Theo phương tích ta có CP . CI = CA . CB.

Lại có CK . CD = CI . CP nên CK . CD = CA . CB.

Mà C, A, B cố định và D là trung điểm của AB \(\Rightarrow\) D cố định nên K cũng cố định.

Vậy QI đi qua K cố định.

29 tháng 5 2021

a) Vì TO là đường kính \(\Rightarrow\angle TMO=90\) mà \(M\in\left(O\right)\Rightarrow TM\) là tiếp tuyến của (O)

b) Xét \(\Delta TMC\) và \(\Delta TDM:\) Ta có: \(\left\{{}\begin{matrix}\angle MTDchung\\\angle TMC=\angle TDM\end{matrix}\right.\)

\(\Rightarrow\Delta TMD\sim\Delta TCM\left(g-g\right)\Rightarrow\dfrac{TC}{TM}=\dfrac{TM}{TD}\Rightarrow TC.TD=TM^2\)

c) Vì đường tròn đường kính TO có tâm I và đường tròn (O) cắt nhau tại M và N \(\Rightarrow\) IO là trung trực của MN \(\Rightarrow MN\bot TO\)

mà \(\Delta TMO\) vuông tại M \(\Rightarrow TM^2=TE.TO\) (hệ thức lượng)

mà \(TC.TD=TM^2\Rightarrow TC.TD=TE.TO\Rightarrow\dfrac{TC}{TE}=\dfrac{TO}{TD}\)

Xét \(\Delta TEC\) và \(\Delta TDO:\) Ta có: \(\left\{{}\begin{matrix}\angle OTDchung\\\dfrac{TC}{TE}=\dfrac{TO}{TD}\end{matrix}\right.\)

\(\Rightarrow\Delta TEC\sim\Delta TDO\left(c-g-c\right)\Rightarrow\angle TEC=\angle TDO\Rightarrow ODCE\) nội tiếp