Tìm x
\(\sqrt{x^2+4-4\sqrt{x}}+\sqrt{x^2+4-6\sqrt{x}}=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) ĐKXĐ: \(x\ge-2\)
\(pt\Leftrightarrow\dfrac{\sqrt{x+2}}{2}+5\sqrt{x+2}-2\sqrt{x+2}=14\)
\(\Leftrightarrow\dfrac{\sqrt{x+2}+6\sqrt{x+2}}{2}=14\Leftrightarrow7\sqrt{x+2}=28\)
\(\Leftrightarrow\sqrt{x+2}=4\Leftrightarrow x+2=16\Leftrightarrow x=14\left(tm\right)\)
2) ĐKXĐ: \(x\ge0\)
\(pt\Leftrightarrow2x+3=x^2\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=-1\left(ktm\right)\end{matrix}\right.\)
3) \(pt\Leftrightarrow\sqrt{\left(5x+2\right)^2}=1\Leftrightarrow\left|5x+2\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+2=1\\5x+2=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{5}\\x=-\dfrac{3}{5}\end{matrix}\right.\)
4) ĐKXĐ: \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1\ge0\\2x-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+1\le0\\2x-1< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{1}{2}\\x\le-1\end{matrix}\right.\)
\(pt\Leftrightarrow\dfrac{x+1}{2x-1}=4\Leftrightarrow x+1=8x-4\)
\(\Leftrightarrow7x=5\Leftrightarrow x=\dfrac{5}{7}\left(tm\right)\)
5) ĐKXĐ: \(x\ge2\)
\(pt\Leftrightarrow\dfrac{x-2}{3x+1}=36\)
\(\Leftrightarrow x-2=108x+36\Leftrightarrow107x=-38\Leftrightarrow x=-\dfrac{38}{107}\left(ktm\right)\)
Vậy \(S=\varnothing\)
ĐKXĐ: \(x\ge0;x\ne4\)
\(P=\dfrac{x+\sqrt{x}}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}+2}+\dfrac{x-6\sqrt{x}+4}{x-4}\)
\(=\dfrac{\left(x+\sqrt{x}\right)\left(\sqrt{x}+2\right)-\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+x-6\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x\sqrt{x}+2x+x+2\sqrt{x}-\left(2x-4\sqrt{x}-\sqrt{x}+2\right)+x-6\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x\sqrt{x}+2x+x+2\sqrt{x}-2x+4\sqrt{x}+\sqrt{x}-2+x-6\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x\sqrt{x}+2x+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}\left(x+1\right)+2\left(x+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\left(x+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{x+1}{\sqrt{x}-2}\)
Khi \(x=9+4\sqrt{5}\)
Ta có: \(4+4\sqrt{5}+5=2^2+2\cdot2\cdot\sqrt{5}+\left(\sqrt{5}\right)^2=\left(2+\sqrt{5}\right)^2\)
\(\Rightarrow\sqrt{x}=2+\sqrt{5}\)
\(\Rightarrow P=\dfrac{\left(2+\sqrt{5}\right)^2+1}{2+\sqrt{5}-2}=\dfrac{9+4\sqrt{5}+1}{\sqrt{5}}=\dfrac{10+4\sqrt{5}}{\sqrt{5}}=4+2\sqrt{5}\)
Vậy \(P=4+2\sqrt{5}\) khi \(x=9+4\sqrt{5}\).
\(D=\dfrac{x\sqrt{x}+2x+x+2\sqrt{x}-2x+4\sqrt{x}+\sqrt{x}-2+x-6\sqrt{x}+4}{x-4}\)
\(=\dfrac{x\sqrt{x}+2x+2}{x-4}\)
Khi x=9+4căn 5 thì \(D=\dfrac{\left(9+4\sqrt{5}\right)\left(\sqrt{5}+2\right)+2\sqrt{5}+4+2}{\sqrt{5}-2}\)
\(=\dfrac{9\sqrt{5}+18+20+8\sqrt{5}+2\sqrt{5}+6}{\sqrt{5}-2}\)
=(44+19căn 5)*(căn 5+2)
=44căn 5+88+95+38căn 5
=82căn 5+183
a) \(\sqrt{4x^2+4x+1}=6\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)
\(\Leftrightarrow\left(2x+1\right)^2=6^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
b) \(\sqrt{4x^2-4\sqrt{7}x+7}=\sqrt{7}\)
\(\Leftrightarrow\sqrt{\left(2x-\sqrt{7}\right)^2}=\sqrt{7}\)
\(\Leftrightarrow\left(2x-\sqrt{7}\right)^2=\left(\sqrt{7}\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\sqrt{7}=\sqrt{7}\\2x-\sqrt{7}=-\sqrt[]{7}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\\x=0\end{matrix}\right.\)
a) \(\sqrt{4x^2+4x+1}=6\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)
\(\Leftrightarrow\left|2x+1\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
b) \(pt\Leftrightarrow\sqrt{\left(2x-\sqrt{7}\right)^2}=\sqrt{7}\)
\(\Leftrightarrow\left|2x-\sqrt{7}\right|=\sqrt{7}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\sqrt{7}=\sqrt{7}\\2x-\sqrt{7}=-\sqrt{7}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\\x=0\end{matrix}\right.\)
\(a,\Leftrightarrow x-1=4\Leftrightarrow x=5\\ b,\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{4}\\3x+1=4x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{4}\\x=4\left(tm\right)\end{matrix}\right.\Leftrightarrow x=4\\ c,ĐK:x\ge-5\\ PT\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\\ \Leftrightarrow3\sqrt{x+5}=6\\ \Leftrightarrow\sqrt{x+5}=3\\ \Leftrightarrow x+5=9\\ \Leftrightarrow x=4\left(tm\right)\)
\(d,\Leftrightarrow\sqrt{\left(x-2\right)^2}=\sqrt{\left(\sqrt{5}+1\right)^2}\\ \Leftrightarrow\left|x-2\right|=\sqrt{5}+1\\ \Leftrightarrow\left[{}\begin{matrix}x-2=\sqrt{5}+1\\2-x=\sqrt{5}+1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{5}+3\\x=1-\sqrt{5}\end{matrix}\right.\)
Phần a,b,c bạn có thể tham khảo bài bên dưới.
Phần d.
ĐKXĐ: $x\geq 0; x\neq 4$
$A>5\Leftrightarrow \frac{x+9}{2\sqrt{x}}>5$ ($x> 0$)
$\Leftrightarrow x+9> 10\sqrt{x}$
$\Leftrightarrow x-10\sqrt{x}+9>0$
$\Leftrightarrow (\sqrt{x}-1)(\sqrt{x}-9)>0$
\(\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} \sqrt{x}-1>0\\ \sqrt{x}-9>0\end{matrix}\right.\\ \left\{\begin{matrix} \sqrt{x}-1<0\\ \sqrt{x}-9<0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} x>1\\ x>81\end{matrix}\right.\\ \left\{\begin{matrix} 0\leq x< 1\\ 0\leq x< 81\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow \left[\begin{matrix} x>81\\ 0\leq x< 1\end{matrix}\right.\)
Kết hợp với đkxđ suy ra $x>81$ hoặc $0< x< 1$
a
Với: x \(\ge0,x\) \(\ne4\) có:
\(A=\left(\dfrac{x-\sqrt{x}+7}{x-4}+\dfrac{\sqrt{x}+2}{x-4}\right):\left(\dfrac{\left(\sqrt{x}+2\right)^2}{x-4}-\dfrac{\left(\sqrt{x}-2\right)^2}{x-4}-\dfrac{6\sqrt{x}}{x-4}\right)\)
\(=\left(\dfrac{x-\sqrt{x}+7+\sqrt{x}+2}{x-4}\right):\left(\dfrac{x+4\sqrt{x}+4}{x-4}-\dfrac{x-4\sqrt{x}+4}{x-4}-\dfrac{6\sqrt{x}}{x-4}\right)\)
\(=\left(\dfrac{x+9}{x-4}\right):\left(\dfrac{x+4\sqrt{x}+4-x+4\sqrt{x}-4-6\sqrt{x}}{x-4}\right)\)
\(=\left(\dfrac{x+9}{x-4}\right):\left(\dfrac{2\sqrt{x}}{x-4}\right)\)
\(=\dfrac{\left(x+9\right)\left(x-4\right)}{2\sqrt{x}\left(x-4\right)}=\dfrac{x+9}{2\sqrt{x}}\)
b
Giải \(x^2-5x+4=0\)
Nhẩm nghiệm: a + b + c = 0 (1 - 5 + 4 = 0)
\(\Rightarrow x_1=1;x_2=\dfrac{c}{a}=\dfrac{4}{1}=4\)
Thay x = 1 vào A:
\(A=\dfrac{1+9}{2\sqrt{1}}=\dfrac{10}{2}=5\)
Thay x = 4 vào A:
\(A=\dfrac{4+9}{2.\sqrt{4}}=\dfrac{13}{2.2}=\dfrac{13}{4}\)
c
ĐK: x > 0
\(A=0\Leftrightarrow\dfrac{x+9}{2\sqrt{x}}=0\)
=> \(x+9=0\Rightarrow x=-9\) (không thỏa mãn)
Vậy không xác định được giá trị x
d
ĐK: x > 0
\(A>5\Leftrightarrow\dfrac{x+9}{2\sqrt{x}}>5\)
\(\Leftrightarrow x+9>5.2\sqrt{x}\Leftrightarrow x+9>10\sqrt{x}\)
\(\Leftrightarrow\left(x+9\right)^2>\left(10\sqrt{x}\right)^2=100x\)
<=> \(x^2+18x+81-100x>0\)
<=> \(x^2-82x+81>0\)
<=> \(x^2-81x-x+81>0\)
<=> \(x\left(x-81\right)-\left(x-81\right)>0\)
<=> \(\left(x-1\right)\left(x-81\right)>0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x-1>0\\x-81>0\end{matrix}\right.\\\left[{}\begin{matrix}x-1< 0\\x-81< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>1\\x>81\end{matrix}\right.\\\left[{}\begin{matrix}x< 1\\x< 81\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>81\\x< 81\end{matrix}\right.\)
Vậy để A > 5 thì x > 81 và 0 < x < 81
mầy câu 1;3;;4;5 cách làm nhu nhau(nhân liên hop hoac bình phuong lên)
1.
\(DK:x\in\left[-4;5\right]\)
\(\Leftrightarrow\sqrt{x-5}+\left(\sqrt{x+4}-3\right)=0\)
\(\Leftrightarrow\sqrt{x-5}+\frac{x-5}{\sqrt{x+4}+3}=0\)
\(\Leftrightarrow\sqrt{x-5}\left(1+\frac{\sqrt{x-5}}{\sqrt{x+4}+3}\right)=0\)
Vi \(1+\frac{\sqrt{x-5}}{\sqrt{x+4}+3}>0\)
\(\Rightarrow\sqrt{x-5}=0\)
\(x=5\left(n\right)\)
Vay nghiem cua PT la \(x=5\)
2.
\(DK:x\ge0\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x}-2\right)^2}+\sqrt{\left(\sqrt{x}-3\right)^2}=1\)
\(\Leftrightarrow|\sqrt{x}-2|+|\sqrt{x}-3|=1\)
Ta co:
\(|\sqrt{x}-2|+|\sqrt{x}-3|=|\sqrt{x}-2|+|3-\sqrt{x}|\ge|\sqrt{x}-2+3-\sqrt{x}|=1\)
Dau '=' xay ra khi \(\left(\sqrt{x}-2\right)\left(3-\sqrt{x}\right)\ge0\)
TH1:
\(\hept{\begin{cases}\sqrt{x}-2\ge0\\3-\sqrt{x}\ge0\end{cases}\Leftrightarrow4\le x\le9\left(n\right)}\)
TH2:(loai)
Vay nghiem cua PT la \(x\in\left[4;9\right]\)
a) Áp dụng bđt AM-GM có:
\(\sqrt[3]{\left(9-x\right).8.8}\le\dfrac{9-x+8+8}{3}=\dfrac{25-x}{3}\)\(\Leftrightarrow\sqrt[3]{9-x}\le\dfrac{25-x}{12}\)
\(\sqrt[3]{\left(7+x\right).8.8}\le\dfrac{7+x+8+8}{3}=\dfrac{23+x}{3}\)\(\Leftrightarrow\sqrt[3]{7+x}\le\dfrac{23+x}{12}\)
Cộng vế với vế \(\Rightarrow\sqrt[3]{9-x}+\sqrt[3]{7+x}\le4\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}9-x=8\\7+x=8\end{matrix}\right.\)\(\Rightarrow x=1\)
Vậy...
b)Đk:\(x\ge2\)
Pt \(\Leftrightarrow\left(x-1\right)^2.\left(x^2-4\right)=\left(x-2\right)^2.\left(x^2-1\right)\)
\(\Leftrightarrow\left(x-1\right)^2\left(x-2\right)\left(x+2\right)=\left(x-2\right)^2\left(x+1\right)\left(x-1\right)\)
Do \(x\ge2\Rightarrow x-1>0\)
Chia cả hai vế của pt cho x-1 ta được:
\(\left(x-1\right)\left(x-2\right)\left(x+2\right)=\left(x-2\right)^2\left(x+1\right)\)
\(\Leftrightarrow\left(x-2\right)\left[\left(x-1\right)\left(x+2\right)-\left(x-2\right)\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2+x-2-x^2+3x-2\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(4x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=1\left(ktm\right)\end{matrix}\right.\)
Vậy S={2}
c)Đk:\(\left\{{}\begin{matrix}9-x^2\ge0\\x^2-1\ge0\\x-3\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}-3\le x\le3\\\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\\x\ge3\end{matrix}\right.\)\(\Rightarrow x=3\)
Thay x=3 vào pt thấy thỏa mãn
Vậy S={3}
a) Quên mất, ko áp dụng đc AM-GM, xin lỗi
Pt \(\Leftrightarrow\sqrt[3]{9-x}-2=2-\sqrt[3]{7+x}\)
\(\Leftrightarrow\dfrac{9-x-8}{\sqrt[3]{\left(9-x\right)^2}+2\sqrt[3]{9-x}+4}=\dfrac{8-\left(7-x\right)}{4+2\sqrt[3]{7+x}+\sqrt[3]{\left(7+x\right)^2}}\)
\(\Leftrightarrow\dfrac{1-x}{\sqrt[3]{\left(9-x\right)^2}+2\sqrt[3]{9-x}+4}=\dfrac{1-x}{4+2\sqrt[3]{7+x}+\sqrt[3]{\left(7+x\right)^2}}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\\dfrac{1}{\sqrt[3]{\left(9-x\right)^2}+2\sqrt[3]{9-x}+4}=\dfrac{1}{4+2\sqrt[3]{7+x}+\sqrt[3]{\left(7+x\right)^2}}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\sqrt[3]{\left(9-x\right)^2}+2\sqrt[3]{9-x}+4=4+2\sqrt[3]{7+x}+\sqrt[3]{\left(7+x\right)^2}\left(1\right)\end{matrix}\right.\)
Từ (1) \(\Leftrightarrow\sqrt[3]{\left(9-x\right)^2}-\sqrt[3]{\left(7+x\right)^2}+2\left(\sqrt[3]{9-x}-\sqrt[3]{7+x}\right)=0\)
\(\Leftrightarrow\left(\sqrt[3]{9-x}-\sqrt[3]{7+x}\right)\left(\sqrt[3]{9-x}+\sqrt[3]{7+x}\right)+2\left(\sqrt[3]{9-x}-\sqrt[3]{7+x}\right)=0\)
\(\Leftrightarrow\left(\sqrt[3]{9-x}-\sqrt[3]{7+x}\right).4+2\left(\sqrt[3]{9-x}-\sqrt[3]{7+x}\right)=0\)
\(\Leftrightarrow\sqrt[3]{9-x}-\sqrt[3]{7+x}=0\)
\(\Leftrightarrow\sqrt[3]{9-x}=\sqrt[3]{7+x}\)\(\Leftrightarrow9-x=7+x\)
\(\Leftrightarrow x=1\)
Vậy S={1}
a) Ta có: \(2\sqrt{9x-27}-\dfrac{1}{5}\sqrt{25x-75}-\dfrac{1}{7}\sqrt{49x-147}=20\)
\(\Leftrightarrow6\sqrt{x-3}-\sqrt{x-3}-\sqrt{x-3}=20\)
\(\Leftrightarrow4\sqrt{x-3}=20\)
\(\Leftrightarrow x-3=25\)
hay x=28
b) Ta có: \(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)
\(\Leftrightarrow3\sqrt{x+2}-5\sqrt{x+2}+4\sqrt{x+2}=6\)
\(\Leftrightarrow2\sqrt{x+2}=6\)
\(\Leftrightarrow x+2=9\)
hay x=7
Ta có thể dùng cosy hoặc đặt a,b lần lượt là hai số hạng vế trái của phương, đưa phương trình về hệ phương trình không triệt để. Từ đó giải phương.
Đầu kiện: \(x\ge0\)
Ta có:
\(4\sqrt{x}=2\sqrt{4x}\le4+x\\ \Rightarrow x^2+4-4\sqrt{x}\ge x^2-x\\ \Rightarrow\sqrt{x^2+4-4\sqrt{x}}\ge\sqrt{x^2-x}\)
\(6\sqrt{x}=2\sqrt{9x}\le9+x\\ \Rightarrow\sqrt{x^2+4-6\sqrt{x}}\ge\sqrt{x^2-x-5}\)
Suy ra \(1\ge\sqrt{x^2-x}+\sqrt{x^2-x-5}\)
Đặt \(\sqrt{x^2-x}=a;0\le a\le1\\ \sqrt{x^2-x-5}=b;0\le b\le1.\\ \Rightarrow a^2-b^2=\left(x^2-x\right)-\left(x^2-x-5\right)=5.Vôlí\)
Vậy phương trình đã cho vô nghiệm.