K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2016

Ta có:

(n2−8)2+36

=n4−16n2+64+36

=n4+20n2+100−36n2

=(n2+10)2−(6n)2

=(n2+10+6n)(n2+10−6n)

Mà để (n2+10+6n)(n2+10−6n) là số nguyên tố thì n2+10+6n=1 hoặc n2+10−6n=1

Mặt khác ta có n2+10−6n<n2+10+6n  n2+10−6n=1 (n thuộc N) 

 n2+9−6n=0 hay (n−3)2=0  n=3

Vậy với n=3 thì (n2−8)2+36 là số nguyên tố
_________________

23 tháng 12 2019

Ta có

(n^2-8)^2

=n^4-16n^2+100

=n^4+100+20n^2-36n^2

=(n^2+10)^2-(6n)^2

=(n^2+10-6n)*(n^2+10+6n)

thử 2 trường hợp ta được n=3 thì t/m

19 tháng 10 2017

a)Ta có số nguyên tố là số có ước chỉ là chính nó và số một 

=> nếu k lớn hơn 1 thì k sẽ chia hết cho cả những số khác 1 và chính nó

=> k=1

a)Ta có số nguyên tố là số có ước chỉ là chính nó và số một 

=> nếu k lớn hơn 1 thì k sẽ chia hết cho cả những số khác 1 và chính nó

=> k=1

22 tháng 11 2017

Có : 4n+n^2 = n.(n+4)

Để n.(n+4) là số nguyên tố thì n=1 hoặc n+4= 1

=> n=1 hoặc n=-3

Mà n là số tự nhiên => n=1

Khi đó : n^2+4n = 1^2+4.1 = 5 là số nguyên tố (tm)

Vậy n = 1

k mk nha

25 tháng 12 2022

1"2+4.1=2+4=6 là hợp số

2 tháng 1 2016

(n+3)(n+1) là số nguyên tố

<=> n+3=1 hoặc n+1=1

n+3=1=>n=-2(vô lí)

n+1=1=>n=0

Vậy (n+3)(n+1) là số nguyên tố khi và chỉ khi n=0

Mọi người tick ủng hộ nhé!!!!!!!!!!!!!!!!

2 tháng 1 2016

(n + 3)(n + 1) là số nguyên tố

< = > n + 3 = 1 hoặc n + 1 = 1

n + 3 = 1 => n= -2 (vô lí)

n + 1 = 1 => n = 0

Vậy (n + 3)(n+ 1) là số nguyên tố kh và chỉ khi n = 0

10 tháng 11 2016

Giả sử \(7n+13\)\(2n+4\) cùng chia hết cho số nguyên tố d

Ta có: \(7\left(2n+4\right)-2\left(7n+13\right)⋮d\rightarrow2⋮d\rightarrow d\in\left\{1;2\right\}\)

Để \(\left(7n+13;2n+4\right)=1\) thì \(d\ne2\)

Ta có: \(2n+4\) luôn chia hết cho \(2\) khi đó \(7n+13\) không chia hết cho \(2\) nếu \(7n\) chia hết cho \(3\) hay \(n\) chia hết cho \(2.\)
=> Với \(n\) chẵn thì thì \(7n+13\)\(2n+4\) là hai số nguyên tố cùng nhau

 
9 tháng 3 2017

Đặt (7n + 13; 2n + 4) = d

\(\Rightarrow\) \(\left\{{}\begin{matrix}7n+13⋮d\\2n+4⋮d\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}2\left(7n+13\right)⋮d\\7\left(2n+4\right)⋮d\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}14n+26⋮d\\14n+28⋮d\end{matrix}\right.\)

\(\Rightarrow\) (14n + 28) - (14n + 26) \(⋮\) d

\(\Rightarrow\) 2 \(⋮\) d

\(\Rightarrow\) d \(\in\) Ư(2) = \(\left\{1;2\right\}\)

mà 7n + 13 \(⋮̸\)2

\(\Rightarrow\) d = 1

Vậy (7n + 13; 2n + 4) = 1