K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2017

a) vì (x-7).(x+2) < 0 => hai số bên là 2 số khác dấu

mả x+2 > x-7 => x+2 > 0 , x-7 < 0

vi  x+2 > 0 => x > 0-2=-2        (1)

vỉ x-7 < 0 =>x < 0+7=7            (2)

Từ (1)(2) => -2 < x < 7

               => x={-1,0,1,2,3,4,5,6}

Vay .....

                       

Bài 2: 

a: =>x=0 hoặc x+3=0

=>x=0 hoặc x=-3

b: =>x-2=0 hoặc 5-x=0

=>x=2 hoặc x=5

c: =>x-1=0

hay x=1

Bài 2: 

a: =>x=0 hoặc x=-3

b: =>x-2=0 hoặc 5-x=0

=>x=2 hoặc x=5

c: =>x-1=0

hay x=1

18 tháng 8 2021

a)(2x-3)(x+5)=0

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-5\end{matrix}\right.\)

Vậy x=3/2 hoặc x=-5

18 tháng 8 2021

a) \(\left(2x-3\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x+5=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-5\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là: \(S=\left\{\dfrac{3}{2};-5\right\}\)

b) \(3x\left(x-2\right)-7\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(3x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-7=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{7}{2}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là: \(S=\left\{2;\dfrac{7}{2}\right\}\)

c) \(5x\left(2x-3\right)-6x+9=0\)

\(\Leftrightarrow5x\left(2x-3\right)-3\left(2x-3\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(5x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\5x-3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{3}{5}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là: \(S=\left\{\dfrac{3}{2};\dfrac{3}{5}\right\}\)

10 tháng 8 2023

a) \(x\left(x-6\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

b) \(\left(-7-x\right)\left(-x+5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-7\\x=-5\end{matrix}\right.\)

c) \(\left(x+3\right)\left(x-7\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)

d) \(\left(x-3\right)\left(x^2+12\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\text{(vô lý)}\end{matrix}\right.\)

\(\Rightarrow x=3\)

e) \(\left(x+1\right)\left(2-x\right)\ge0\)

\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x+1\ge0\\2-x\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x+1\le0\\2-x\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-1\\x\le2\end{matrix}\right.\\\left[{}\begin{matrix}x\le-1\\x\ge2\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}-1\le x\le2\\x\in\varnothing\end{matrix}\right.\)

\(\Rightarrow-1\le x\le2\)

f) \(\left(x-3\right)\left(x-5\right)\le0\)

\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x-3\le0\\x-5\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x-3\ge0\\x-5\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\le3\\x\ge5\end{matrix}\right.\\\left[{}\begin{matrix}x\ge3\\x\le5\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow3\le x\le5\)

a) =>\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

b => \(\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-7\\x=5\end{matrix}\right.\)

d) => \(\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\end{matrix}\right.\)(vô lí) => x=3

19 tháng 1 2017

Bài 1: Cho từng cái < hoặc > 0 rồi giải ra tìm điều kiện của x

Bài 2:

Phân tích số 12 ra là:

3 x 4 = 12

-3 x (-4) = 12

Ta thấy: 

3 + 4 = 7

-3 + (-4) = -7 (đáp ứng đúng yêu cầu đề)

=> a = -3 và b = -4

18 tháng 1 2016

giải được câu b thôi.

b, (|x| + 2) . (6 - 2|x|) = 0

=> Với mọi số nguyên x thuộc Z thì |x| > 2

=> 6 - 2|x| = 0

=> 2|x| = 6 - 0

=> 2|x| = 6

=> |x| = 6 / 3

=> |x| = 2 và x = 2 hoặc x = -2

22 tháng 6 2015

(x - 2) (7 - x) > 0

x - 2 >0 hay 7 - x >0

x > 0 - 2 hay x > 7 - 0   

x > -2 hay x>7

 

12 tháng 9 2021

\(a,\dfrac{-5}{x-3}< 0\Leftrightarrow x-3>0\left(-5< 0\right)\Leftrightarrow x>3\\ b,\dfrac{3-x}{x^2+1}\ge0\Leftrightarrow3-x\ge0\left(x^2+1>0\right)\Leftrightarrow x\le3\\ c,\dfrac{\left(x-1\right)^2}{x-2}< 0\Leftrightarrow x-2< 0\left[\left(x-1\right)^2\ge0\right]\Leftrightarrow x< 2\)