Tính nhanh giá trị biểu thức sau:
\(\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+.....+\frac{2}{95x97}+\frac{2}{97x99}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo cách mk học sẽ suy ra lun
=1/1-1/3+1/3-1/5+1/5-1/7+...+1/2001-1/2003+1/2003-1/2005
=1-1/2005
=2004/2005
\(2A=\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+...+\frac{2}{999x1001}\)
\(2A=\frac{3-1}{1x3}+\frac{5-3}{3x5}+\frac{7-5}{5x7}+...+\frac{1001-999}{999x1001}\)
\(2A=\frac{3}{1x3}-\frac{1}{1x3}+\frac{5}{3x5}-\frac{3}{3x5}+\frac{7}{5x7}-\frac{5}{5x7}+...+\frac{1001}{999x1001}-\frac{999}{999x1001}\)
\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{999}-\frac{1}{1001}\)
\(2A=1-\frac{1}{1001}=\frac{1000}{1001}\)=> A = 500/1001
\(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\)
\(=1-\frac{1}{9}=\frac{8}{9}\)
\(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\)
\(=1+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{7}-\frac{1}{7}\right)-\frac{1}{9}\)
\(=1-\frac{1}{9}=\frac{8}{9}\)
~ Hok tốt ~
\(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+........+\frac{2}{57.59}\)
\(B=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-.........-\frac{1}{59}\)
\(B=1-\frac{1}{59}\)
\(B=\frac{59}{59}-\frac{1}{59}=\frac{58}{59}\)
Vậy B = \(\frac{58}{59}\)
Lưu ý: Dấu "." là dấu nhân
\(B=\frac{2}{1.3}+\frac{1}{3.5}+\frac{2}{5.7}+...+\frac{1}{57.59}\)
\(B=1.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{57}-\frac{5}{59}\right)\)
\(B=1.\left(1-\frac{1}{59}\right)\)
\(B=1.\frac{58}{59}\)
\(B=\frac{58}{59}\)
\(\frac{2}{1x3}+\)\(\frac{2}{3x5}+\)\(\frac{2}{5x7}+\)\(\frac{2}{7x9}+\frac{2}{9x11}+\frac{2}{11x13}\)
= \(\frac{3-1}{1x3}+\frac{5-3}{3x5}+\frac{7-5}{5x7}+\frac{9-7}{7x9}+\frac{11-9}{9x11}\)\(+\frac{13-11}{11x13}\)
= \(\frac{3}{1x3}-\frac{1}{1x3}+\frac{5}{3x5}-\frac{3}{3x5}+\frac{7}{5x7}-\frac{5}{5x7}+\frac{9}{7x9}-\frac{7}{7x9}+\frac{11}{9x11}\)\(-\frac{9}{9x11}\)\(+\frac{13}{11x13}-\frac{11}{11x13}\)
= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\)\(\frac{1}{13}\)
= \(1-\frac{1}{13}=\frac{12}{13}\)
Câu a
\(S=\frac{3-1}{1x3}+\frac{5-3}{3x5}+\frac{7-5}{5x7}+...+\frac{2019-2017}{2017x2019}.\)
\(S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}=1-\frac{1}{2019}=\frac{2018}{2019}\)
Câu b
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^6}+\frac{1}{3^7}\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^5}+\frac{1}{3^6}\)
\(2A=3A-A=1-\frac{1}{3^7}\Rightarrow A=\frac{1}{2}-\frac{1}{2.3^7}\)
Lời giải:
$A=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{99-97}{97.99}$
$=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}$
$=1-\frac{1}{99}=\frac{98}{99}$
= 1-1/3 + 1/3-1/5+.......+1/97-1/99
= 1 - 1/99
= 98/99
sao lại là 1- 1/3 + 1/3 -1/5 + ...... 1/97 - 1/99 hả bạn :|