CMR:2009^2009 chia hết cho 2008
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất a^n - 1 chia hết cho a-1 với mọi a thuộc N thì 2009^2009 - 1 = 2009^2009 - 1^2009 chia hết cho 2009 - 1 = 2008
=>ĐPCM
Ai làm hộ thì cám ơn lòng tốt nhé
Mà mình biết làm bài này òi.
Nãy là lười không chịu động não nên.....
Mình biết làm òi nhé
A a mình nhầm òi. mk chưa làm được. cũng tại tính bồng bột của mình. mọi người giúp mk câu này nhé. đưng nghĩ mk kiếm tk. ai ko thích thì đừng tk mk
Dễ quá, thực hiện qui tắc bỏ dấu ngoặc được:
\(2009+2009^2+....+2009^{2009}-1-2009-...-2009^{2008}\)
\(=-1+\left(2009-2009\right)+\left(2009^2-2009^2\right)+...+\left(2009^{2008}-2009^{2008}\right)+2009^{2008}\)
\(=2009^{2008}-1\)
\(=\left(2009-1\right)\left(2009^{2007}+2009^{2008}+...+2009+1\right)\)
\(=2008\left(2009^{2007}+2009^{2008}+...+2009+1\right)\) chia hết cho 2008
=> ĐPCM
Chứng Minh Rằng: (2009+20092+20093+20094+...+20092009)-(1+2009+20092+20093+...+20092008) chia hết cho 2008.
Đặt A=2009+20092+20093+20094+...+20092009, B=1+2009+20092+20093+20094+...+20092008
Ta có:
+)A=2009+20092+20093+20094+...+20092009
2009A= 20092+20093+20094+...+20092010
2009A-A=(20092+20093+20094+...+20092010)-(2009+20092+20093+20094+...+20092009)
2008A=20092010- 2009
=> A=(20092010- 2009)/2008
=> A chia hết cho 2008.
B=1+2009+20092+20093+20094+...+20092008
2009B=2009+20092+20093+20094+...+20092010
2009B-B=(2009+20092+20093+20094+...+20092010)-(1+2009+20092+20093+20094+...+20092009)
2008B=20092010-1
=>B=(20092010-1)/2008
=>B chia hết cho 2008
=> A-B chia hết cho 2008.
=> ĐPCM
20092008=20093*20092005
Vì 20093 chia hết cho 2010 nên 20093*20095 chia hết cho 2010 hay 20092008 chia hết cho 2010
20112010=20114*20112006
Vì 20114 chia hết cho 2010 nên 20114*20112016 chia hết cho 2010 hay 20112010 chia hết cho 2010
=>20092008+20112010 chia hết cho 2010
2009^2008+2011^2010=2009^2008+ 2011^2010+1-1=( + 1) + ( – 1)=( 2009^2008+1)+(2011^2010-1)
= (2009 + 1)( 2009^2007- …) + (2011 – 1)(2011^2009 + …)
= 2010(2009^2008 - …) + 2010( 2011^2009+ …) chia hết cho 2010
Tick nha nggxđn
Ta có: \(9^{2009}\)=\(\left(10-1\right)^{2009}\)= 10k -1 chia 5 dư -1
\(8^{2008}=\left(5+3\right)^{2008}=5m+3^{2008}\)
Mặc khác: \(3^{2008}=3^{4\cdot502}\)mà 34 tận cũng bằng 1 nên 32008 tận cùng bằng 1 hay 32008=10*m +1 chia cho 5 dư 1
Do đó: 92009+82008 chia hết cho 5
2006^2007 đồng dư với 1 (mod 5)
2007^2008 đồng dư với 1 (mod 5)
2008^2009 đồng dư với 3 (mod 5)
Vậy P đồng dư với 0 (mod 5)
Vậy P chia hết cho 5
M=\(3^{2012}-3^{2011}+3^{2010}-3^{2009}+3^{2008}\)
= \(3^{2008}.\left(3^4-3^3+3^2-3\right)\)
= \(3^{2008}.60\)
Vì \(60⋮10\) => \(3^{2008}.60⋮10\)
Hay \(3^{2012}-3^{2011}+3^{2010}-3^{2009}+3^{2008}⋮10\)
Vậy \(M⋮10\)
Chúc bạn hk tốt !!