Cho tam giác ABC: M là trung điểm AC. Trên tia đối của MB lấy D sao cho: BM=MB
a) CMR:Tam giác ABM= tam giác CDM
b)CMR: AB song song với CD
c) Trên DC kéo dài lấy N sao cho CD=DN (C thuộc N)
CMR: BN song song với AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Xét: Tam giác ABM và tam giác CDM
Ta có : AM = MC(Vì M là trung điểm của AC)
M1=M3(đđ)
MD=MB(gt)
=> Tam giác ABM = Tam giác CDM.( c - g - c )
b)
Xét: Tam giác BMC và Tam giac DMA
Ta có: BM =DM
M2 = M4(đđ)
MA=MC(cmt)
=> Tam giác BMC = Tam giác DMA ( c - g - c )
=> góc MBC = góc MDA( hai góc tương ứng )
Mà góc MBC và góc MDA ở vị trí so le trong
=> AD//BC.
a) Xét ΔABM và ΔCDM có
MA=MC(M là trung điểm của AC)
\(\widehat{AMB}=\widehat{CMD}\)(hai góc đối đỉnh)
MB=MD(gt)
Do đó: ΔABM=ΔCDM(c-g-c)
b) Ta có: ΔABM=ΔCDM(cmt)
nên \(\widehat{ABM}=\widehat{CDM}\)(hai góc tương ứng)
mà \(\widehat{ABM}\) và \(\widehat{CDM}\) là hai góc ở vị trí so le trong
nên AB//CD(Dấu hiệu nhận biết hai đường thẳng song song)
c) Xét ΔDBN có
M là trung điểm của BD(gt)
C là trung điểm của DN(gt)
Do đó: MC là đường trung bình của ΔDBN(Định nghĩa đường trung bình của tam giác)
Suy ra: MC//BN(Định lí 2 đường trung bình của tam giác)
hay BN//AC(đpcm)
câu trả lời của Lương Ngọc Anh đúng rồi mình hơi nhầm lộn 1 chút :)
a: Xét ΔMAB và ΔMCD có
MA=MC
góc AMB=góc CMD
MB=MD
Do đó: ΔMAB=ΔMCD
b: Xét tứ giác ABCD có
M là trung điểm chung của AC và BD
nên ABCD là hình bình hành
=>AB//CD và AB=CD
=>AB//CN và AB=CN
=>ABNC là hình bình hành
=>BN//AC
a/xét ABM=CDM(c-g-c)
ABMˆ=CDMˆ
b/Tứ giác ABCD là hình bình hành vì 2 dg chéo cắt nhau tại trung điểm mỗi dg AB//CD
c/MC là dg TBinh của tam giác DBN AC//BN