ho tam giác abc cân tại a. Trên đoạn AC lấy điểm E. Trên tia đối tia BA lấy điểm F sao cho BE=CF. Chứng minh trung điểm của EF nằm trên BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC và ΔEFC có
CA=CE
FC=BC
AB=EF
Do đó: ΔABC=ΔEFC
a: Xét ΔMAC và ΔMDB có
MA=MD
\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)
MC=MB
Do đó: ΔMAC=ΔMDB
b: Xét ΔMEB và ΔMFC có
ME=MF
\(\widehat{BME}=\widehat{CMF}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔMEB=ΔMFC
=>\(\widehat{MEB}=\widehat{MFC}\)
=>\(\widehat{MFC}=90^0\)
=>CF\(\perp\)AD
c: Xét tứ giác BFCE có
M là trung điểm chung của BC và FE
=>BFCE là hình bình hành
=>BF//CE và BF=CE
Ta có: BF//CE
B\(\in\)FG
Do đó: BG//CE
Ta có: BF=CE
BF=BG
Do đó: BG=CE
Xét tứ giác BGEC có
BG//EC
BG=EC
Do đó: BGEC là hình bình hành
=>BE cắt GC tại trung điểm của mỗi đường
mà H là trung điểm của BE
nên H là trung điểm của GC
=>G,H,C thẳng hàng
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
a: Xét ΔFBC vuông tại F và ΔECB vuông tại E có
BC chung
\(\widehat{FBC}=\widehat{ECB}\)
DO đó: ΔFBC=ΔECB
Suy ra: FB=EC
b: Ta có: AF+FB=AB
AE+EC=AC
mà BF=CE
và AB=AC
nên AF=AE
Xét ΔABC có AF/AB=AE/AC
nên FE//BC
a: Xét ΔABE và ΔACF có
AB=AC
góc ABE=góc ACF
BE=CF
Do đó: ΔABE=ΔACF
b: Xét ΔHBE vuông tại H và ΔKCF vuông tại K có
EB=FC
góc E=góc F
Do đó: ΔHBE=ΔKCF
a) Ta có tam giác ABC cân tại A
=> Góc ABC = góc ACB
=> Góc ABE = Góc ACF ( vì góc ABE kề góc ABC, góc ACF kề góc ACB)
Xét tam giác ABE và tam giác ACF
AB = AC ( vì tam giác ABC cân tại A)
ABE = ACF ( cmt)
BE = CF (gt)
=> Tam giác ABE = Tam giác ACF (c-g-c)
=> AE = AF (hai cạnh tương ứng)
=> Tam giác AEF cân tại A
b)Ta có tam giác AEF cân tại A => góc AEB = góc AFC
Xét tam giác EBH và tam giác FCK
Góc BHE = góc CKF (=90 độ)
EB = FC (gt)
Góc HEB = Góc KFC ( vì góc AEB = góc AFC)
=> △EBH=△FCK (g-c-g)
Kẽ EG, FK lần lược vuông góc với BC tại G và K
Xét \(\Delta EBG\&\Delta FCK\)có
\(\hept{\begin{cases}EB=CF\\\widehat{EGB}=\widehat{FKC}\\\widehat{EBG}=\widehat{FCK}\left(=\widehat{ACB}\right)\end{cases}}\)
\(\Rightarrow\Delta EBG=\Delta FCK\)
\(\Rightarrow EG=FK\)
Xét \(\Delta EGI\&\Delta FKI\)có
\(\hept{\begin{cases}\widehat{EGI}=\widehat{FKI}\\\widehat{EIG}=\widehat{FIK}\\EG=FK\end{cases}}\)
\(\Rightarrow\Delta EGI=\Delta FKI\)
\(\Rightarrow EI=FI\)
Vậy BC đi qua trung điểm của EF
mình rất muốn cứu nhưng cái hình mờ mờ ảo ảo quá, ko ra cái j cả, chắc mình nghĩ thêm thôi ~~
ngon rồi nè, cần hình vẽ ko?, ko thì tự vẽ nhá
kẻ eh vuông góc bc, fk vuông góc bc, bc giao ef tại n
tam giác abc cân a
=> góc ebh = góc acb
mà góc acb = góc kcf
=> góc ebh = góc kcf
tam giác ehb và tam giác fkc có
góc h = góc k (=90 độ)
eb=cf(gt)
góc b = góc kcf
=> tam gác ahb = tam giác fkc (ch-gn)
=> eh = fk
tam giác ehn và tam giác fkn có góc enh = góc fnk (đ đ)
mà góc h = góc k = 90 độ
=> góc neh = góc kfn
tam giác ehn và tam giác fkn có
góc h = góc k (= 90 độ)
góc neh = góc kfn
eh = fk
=> tam giác ehn = tam giác fkn
=> en =nf
=> n là tđ ef
=> đpcm
hơi khó đấy @@
a: góc FEB+góc FBE=45+45=90 độ
=>EF vuông góc BC
b: ΔDFC vuông tại F có góc C=45 độ
nên ΔDFC vuông cân tại F
=>FD=FC
c: Xét ΔBEC có
EF,CA là đường cao
EF cắt CA tại D
=>D là trực tâm
=>BD vuông góc CE