Cho nửa đường tròn tâm O đường kính AB ; C là điểm chính giữa cung AB ; M là 1 điểm trên cung BC ; Vẽ CH là đường cao của Δ ACM ; OH giao với MB tại N
a, CM : CHMN là hình vuông
b, OH giao với CB ở I và MI giao với (O) ở D . CM : CM // BD
c, xác định vị trí của M để 3 điểm D,H,B thẳng hàng
d, tìm quỹ tích điểm N khi M di chuyển trên cung BC
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
CM
28 tháng 9 2017
∆ ACB nội tiếp trong đường tròn (O) có AB là đường kính nên ∆ ABC vuông tại C
CO = OA = (1/2)AB (tính chất tam giác vuông)
AC = AO (bán kính đường tròn (A))
Suy ra: AC = AO = OC
∆ ACO đều góc AOC = 60 °
∆ ADB nội tiếp trong đường tròn đường kính AB nên ∆ ADB vuông tại D
DO = OB = OA = (1/2)AB (tính chất tam giác vuông)
BD = BO(bán kính đường tròn (B))
Suy ra: BO = OD = BD
∆ BOD đều
CM
30 tháng 7 2019
Mà AD, CO là hai đường chéo của hình thoi AODC nên AD vuông góc với OC
GIUP TOI LAM VOI
VE HINH NUA