K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2017

vì a,b,c là các số chính phương nên a,b,c sẽ thuộc dạng 3k, 3k+1 hoặc 4k,4k+1

* nếu a = 3k, b = 3h+1,c = 3n hoặc 4k, 4h+1, 4n

=> c - a chia hết cho 3 và 4

Mà [3,4] = 1

=> [a-b][b-c][c-a] chia hết cho 12

* nếu a = 3k, b = 3h+1,c = 3n+1 hoặc 4k, 4h+1, 4n+1

=> b - c chia hết cho 3 và 4

=> [a-b][b-c][c-a] chia hết cho 12

* nếu a = 3k, b = 3h,c = 3n+1 hoặc 4k, 4h, 4n+1

=> a-b chia hết cho 3 và 4

=> [a-b][b-c][c-a] chia hết cho 12

và với một số trường hợp khác, a - b, b-c hoặc c-a sẽ chia hết cho 3 và 4

Vậy [a-b][b-c][c-a] chia hết cho 12 với a,b,c là các scp 

30 tháng 5 2017

trong 4 số abcd có ít nhất 2 số cùng số dư khi chia cho 3

trong 4 số abcd nếu có 2 số cùng số dư khi chia cho 4 thì hiệu 2 số đó sẽ chia hết cho 4

nếu 0 thi 4 số dư theo thứ tự 0.1.2.3 \(\Leftrightarrow\)trong bốn số abcd có 2 số chẵn 2 số lẻ

hiệu của hai số chẵng và 2 số lẻ trong 4 số đó chia hết cho 2

=>tích trên chia 3 và 4

28 tháng 2 2021

`2x+5y=11(1)`

`2x-3y=0(2)`

Lấy (1) trừ (2)

`=>8y=11`

`<=>y=11/8`

`<=>x=(3y)/2=33/16`

a) Ta có: \(\left\{{}\begin{matrix}2x+5y=11\\2x-3y=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}8y=11\\2x-3y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{11}{8}\\2x=3y=3\cdot\dfrac{11}{8}=\dfrac{33}{8}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{33}{16}\\y=\dfrac{11}{8}\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{33}{16}\\y=\dfrac{11}{8}\end{matrix}\right.\)

b) Ta có: \(\left\{{}\begin{matrix}4x+3y=6\\2x+y=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x+3y=6\\4x+2y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2\\2x+y=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-2=4\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=6\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-2\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là (x,y)=(3;-2)

1 tháng 1 2017

1/ Ta có: (-12) . ( x + 46 ) = 0

=> x + 46                      = 0

=> x                              = -46

2/ Ta có: Ư(15) = {-15; -5; -3; -1; 1; 3; 5; 15}

Nếu x.3 = -15 => x = -5 ( chọn)

Nếu x.3 = -5 => -5/3        ( loại)

Nếu x.3 = -3 => x = -1 ( chọn)

Nếu x.3 = -1 => x = -1/3 ( loại)

Nếu x.3 = 1 => x =1/3 ( loại)

Nếu x.3 = 3 => x =1 ( chọn)

Nếu x.3 = 5 => x = 5/3 ( loại)

Nếu x.3 = 15 => x = 5 ( chọn)

Vậy x =-5; -1; 1 ; 5

3/ Ta có: M = c .(b - a) - b . ( a+ c)

                 = bc - ac - ab - bc

                 = -ab - ac

                = -a ( b + c)

                = -( -15)(-6)

                =15 . (-6)

                = -90

Vậy M = -90.

Năm mới vui vẻ

1 tháng 1 2017

Cảm ơn bạn Thu Hà nhé !!! NĂM MỚI TỐT LÀNH.

19 tháng 1 2018
là thế nào dzậy? Mình không hiểu! Sao không có điều kiện?
19 tháng 1 2018

Cái này là thế nào vậy? Mình ko hiểu mấy? 

10 tháng 8 2019

Ko cần tính cũng biết rồi

Cả hai đều bằng 69 

10 tháng 8 2019

a, (6 x 9 ) +6 + 9 

= 54 +15 = 69

b, ( 6 + 9 ) + 6 x 9 

=15 + 54 = 69

chúc bn học tốt

27 tháng 4 2018

a)    \(VT=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)\(=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\) (vì  a+b+c = 1)

\(=3+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\)

\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)

C/m  BĐT phụ:   \(\frac{x}{y}+\frac{y}{x}\ge2\)   với  x,y dương

             \(\Leftrightarrow\)\(x^2+y^2\ge2xy\)

            \(\Leftrightarrow\) \(x^2-2xy+y^2\ge0\)

            \(\Leftrightarrow\) \(\left(x-y\right)^2\ge0\)  luôn đúng

Dấu "=" xảy ra   \(\Leftrightarrow\)\(x=y\)

Áp dụng BĐT trên ta có:   \(\frac{a}{b}+\frac{b}{a}\ge2;\) \(\frac{a}{c}+\frac{c}{a}\ge2;\) \(\frac{b}{c}+\frac{c}{b}\ge2\)

\(\Rightarrow\)\(VT=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\ge3+2+2+2=9\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(a=b=c\)

Vậy    \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(a=b=c\)

Bài 1: 

\(\left\{{}\begin{matrix}a=5c+1\\b=5d+2\end{matrix}\right.\)

\(a^2+b^2=\left(5c+1\right)^2+\left(5d+2\right)^2\)

\(=25c^2+10c+1+25d^2+20d+4\)

\(=25c^2+25d^2+10c+20d+5\)

\(=5\left(5c^2+5d^2+2c+4d+1\right)⋮5\)

Bài 3: 

a: \(4x^2+12x+15=4x^2+12x+9+6=\left(2x+3\right)^2+6>=6\forall x\)

Dấu '=' xảy ra khi x=-3/2

b: \(9x^2-6x+5=9x^2-6x+1+4=\left(3x-1\right)^2+4>=4\forall x\)

Dấu '=' xảy ra khi x=1/3

15 tháng 2 2016

M = a³ + b³ + 3ab(a² + b²) + 6a²b²(a + b) 

= (a+b)(a² - ab + b²) + 3ab[(a+b)² - 2ab] + 6a²b²(a +b ) 

= (a+b) [(a +b)² - 3ab] + 3ab[(a+b)² - 2ab] + 6a²b²(a +b ) 

_______thay a + b = 1 __________________: 
M = 1.(1 - 3ab) + 3ab(1 - 2ab) + 6a²b² 

M = 1 - 3ab + 3ab - 6a²b² + 6a² b² = 1

15 tháng 2 2016

M = a³ + b³ + 3ab(a² + b²) + 6a²b²(a + b) 

= (a+b)(a² - ab + b²) + 3ab[(a+b)² - 2ab] + 6a²b²(a +b ) 

= (a+b) [(a +b)² - 3ab] + 3ab[(a+b)² - 2ab] + 6a²b²(a +b ) 

_______thay a + b = 1 __________________: 
M = 1.(1 - 3ab) + 3ab(1 - 2ab) + 6a²b² 

M = 1 - 3ab + 3ab - 6a²b² + 6a² b² = 1

5 tháng 1 2021

Ta có: \(\left\{{}\begin{matrix}\overrightarrow{a}=m\overrightarrow{u}+\overrightarrow{v}=\left(4m+1;m+4\right)\\\overrightarrow{b}=\overrightarrow{i}+\overrightarrow{j}=\left(1;1\right)\end{matrix}\right.\)

Yêu cầu bài toán <=> cos\(\left(\overrightarrow{a};\overrightarrow{b}\right)\)=cos45o =\(\dfrac{\sqrt{2}}{2}\)

<=> \(\dfrac{\left(4m+1\right)+\left(m+4\right)}{\sqrt{2}\sqrt{\left(4m+1\right)^2+\left(m+4\right)^2}}=\dfrac{\sqrt{2}}{2}\)

<=> \(\dfrac{5\left(m+1\right)}{\sqrt{2}\sqrt{17m^2+16+17}}=\dfrac{\sqrt{2}}{2}\)

<=> \(5\left(m+1\right)=\sqrt{17m^2+16m+17}\)  <=>\(\left\{{}\begin{matrix}m+1\ge0\\25m^2+50m+25=17m^2+16m+17\end{matrix}\right.\)

<=> m=\(-\dfrac{1}{4}\)

5 tháng 1 2021

Còn 2 ở mẫu kia thì đi đâu r ạ