Cho tam giác ABC vuông tại A, vẽ đường cao AH. Chứng minh:
a) Góc B = Góc CAH
b) Góc C= Góc BAH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔABC vuông tại A
=>\(BC^2=AB^2+AC^2\)
=>\(BC^2=6^2+8^2=100\)
=>\(BC=\sqrt{100}=10\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot10=6\cdot8=48\)
=>AH=48/10=4,8(cm)
Xét ΔABC vuông tại A có
\(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\)
nên \(\widehat{C}\simeq37^0\)
ΔABC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ABC}=90^0-37^0=53^0\)
b: ΔABC vuông tại A
mà AM là đường trung tuyến
nên MA=MC=MB=BC/2
Xét ΔMAC có MA=MC
nên ΔMAC cân tại M
=>\(\widehat{MAC}=\widehat{MCA}=\widehat{ACB}\left(1\right)\)
\(\widehat{ACB}+\widehat{ABC}=90^0\)(ΔABC vuông tại A)
\(\widehat{HAB}+\widehat{ABH}=90^0\)(ΔABH vuông tại H)
Do đó: \(\widehat{ACB}=\widehat{HAB}\left(2\right)\)
Từ (1) và (2) suy ra \(\widehat{MAC}=\widehat{HAB}\)
c: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
=>AEHF là hình chữ nhật
=>\(\widehat{AFE}=\widehat{AHE}\)
mà \(\widehat{AHE}=\widehat{ABC}\left(=90^0-\widehat{HAB}\right)\)
nên \(\widehat{AFE}=\widehat{ABC}\)
\(\widehat{AFE}+\widehat{MAC}\)
\(=\widehat{ABC}+\widehat{ACB}=90^0\)
=>FE vuông góc AM tại K
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}BH=\dfrac{6^2}{10}=3,6\left(cm\right)\\CH=\dfrac{8^2}{10}=6,4\left(cm\right)\end{matrix}\right.\)
Xét ΔHAB vuông tại H có HE là đường cao
nên \(HA^2=AE\cdot AB\)
=>\(AE\cdot6=4,8^2\)
=>\(AE=3,84\left(cm\right)\)
Xét ΔHAC vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\)
=>\(AF=\dfrac{4.8^2}{8}=2,88\left(cm\right)\)
Xét ΔAEF vuông tại A có AK là đường cao
nên \(\dfrac{1}{AK^2}=\dfrac{1}{AE^2}+\dfrac{1}{AF^2}\)
=>\(\dfrac{1}{AK^2}=\dfrac{1}{2,88^2}+\dfrac{1}{3.84^2}\)
=>AK=2,304(cm)
a, Xét △BAH vuông tại H và △CAH vuông tại H
Có: AB = AC (△ABC cân tại A)
AH là cạnh chung
=> △BAH = △CAH (ch-cgv)
=> BAH = CAH (2 góc tương ứng)
b, Ta có: BH + HC = BC => BH + HC = 8
Mà BH = HC (△BAH = △CAH)
=> BH = HC = 8 : 2 = 4 (cm)
Xét △AHC vuông tại H
Có: AC2 = AH2 + HC2
=> AC2 = 32 + 42
=> AC2 = 9 + 16
=> AC2 = 25
=> AC = 5 (cm)
c, Xét △EAH vuông tại E và △DAH vuông tại D
Có: AH là cạnh chung
EAH = DAH (cmt)
=> △EAH = △DAH (ch-gn)
=> AE = AD (2 cạnh tương ứng)
d, Xét △AED có: AE = AD (cmt) => △AED cân tại A
=> AED = (180o - EAD) : 2 (1)
Vì △ABC cân tại A => ABC = (180o - BAC) : 2 (2)
Từ (1) và (2) => AED = ABC
Mà 2 góc này nằm ở vị trí đồng vị
=> ED // BC (dhnb)
a) Xét tam giác AHB và AHC có:
AC = BC (gt)
\(\widehat{AHB}=\widehat{AHC}\) (AH vuông góc BC)
=> AHB = AHC (ch-gv)
=> HB = HC (cạnh tương ứng)
\(\widehat{BAH}=\widehat{CAH}\) (góc tương ứng)
b) Ta có HB = HC (cmt)
Mặt khác AH là cạnh góc vuông của tam giác vuông AHC
Áp dụng định lý Pitago ta có:
\(AC^2=AH^2+HC^2\\ =>10^2=AH^2+6^2\\ =>100=AH^2+36\)
\(=>AH^2=100-36=64\\ =>AH=\sqrt{64}=8\)
Phù~ mik vừa thi toán học kì 2 có đề này nè, bây h bạn cần giải ko hay khỏi
Ta có: \(\widehat{BAH}+\widehat{B}=90^0\)
\(\widehat{C}+\widehat{B}=90^0\)
Do đó: \(\widehat{BAH}=\widehat{C}\)
Ta có: \(\widehat{CAH}+\widehat{BAH}+90^0\)
\(\widehat{B}+\widehat{C}=90^0\)
mà \(\widehat{BAH}=\widehat{C}\)
nên \(\widehat{CAH}=\widehat{B}\)
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
=>HB=HC và góc BAH=góc CAH
b: Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
góc MAH=góc NAH
=>ΔAMH=ΔANH
=>AM=AN
=>ΔAMN cân tại A
a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC và AH là tia phân giác của góc BAC
=>HB=HC và góc BAH=góc CAH
b: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó: ΔADH=ΔAEH
Suy ra: AD=AE và HD=HE
hay ΔHED cân tại H