K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2022

A = 2x2 - x + 20 + 7

A = 2.(x2 - 2.\(\dfrac{1}{4}\)x + \(\dfrac{1}{16}\) ) + \(\dfrac{215}{8}\)

A =  2.( x - \(\dfrac{1}{4}\))2 + \(\dfrac{215}{8}\)

 (x -  \(\dfrac{1}{4}\))2 ≥ 0 ⇔ A ≥ \(\dfrac{215}{8}\) ⇔ A(min) = \(\dfrac{215}{8}\) ⇔ x = \(\dfrac{1}{4}\) 

ko có A(max) xem lại đề . bạn có thể xem đồ thị trên hình kèm theo ko có A(max)loading...

21 tháng 10 2022

bài toán không có giá trị lớn nhất. xem lại đề nhà bạn

19 tháng 5 2021

`-2<=x<=2`
`<=>x+2>=0,x-2<=0`
`=>(x+2)(x-2)<=0`
`<=>x^2-4<=0`
`<=>x^2<=4`
`=>A<=4-2x+7=11-2x`
Vì `x>=-2=>2x>=-4`
`=>A<=11+4=15`
Dấu "=" xảy ra khi `x=-2

19 tháng 5 2021

mng giúp em với ạ

 

a: \(B\left(x\right)=-\left(x^2-3x+7\right)\)

\(=-\left(x^2-3x+\dfrac{9}{4}+\dfrac{19}{4}\right)\)

\(=-\left(x-\dfrac{3}{2}\right)^2-\dfrac{19}{4}\le-\dfrac{19}{4}\)

Dấu '=' xảy ra khi x=3/2

b: Ta có: \(C\left(x\right)=-x^2+7x-20\)

\(=-\left(x^2-7x+20\right)\)

\(=-\left(x^2-7x+\dfrac{49}{4}+\dfrac{31}{4}\right)\)

\(=-\left(x-\dfrac{7}{2}\right)^2-\dfrac{31}{4}\le-\dfrac{31}{4}\)

Dấu '=' xảy ra khi x=7/2

17 tháng 8 2019

Bài 1: (1/2x - 5)20 + (y2 - 1/4)10 < 0 (1)

Ta có: (1/2x - 5)20 \(\ge\)\(\forall\)x

         (y2 - 1/4)10 \(\ge\)\(\forall\)y

=> (1/2x - 5)20 + (y2 - 1/4)10 \(\ge\)\(\forall\)x;y

Theo (1) => ko có giá trị x;y t/m

Bài 2. (x - 7)x + 1 - (x - 7)x + 11 = 0

=> (x - 7)x + 1.[1 - (x - 7)10] = 0

=> \(\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}\)

=> \(\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{10}=1\end{cases}}\)

=> x = 7

hoặc : \(\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}}\)

=> x = 7

hoặc : \(\orbr{\begin{cases}x=8\\x=6\end{cases}}\)

Bài 3a) Ta có: (2x + 1/3)4 \(\ge\)\(\forall\)x

=> (2x +1/3)4 - 1 \(\ge\)-1 \(\forall\)x

=>  A \(\ge\)-1 \(\forall\)x

Dấu "=" xảy ra <=> 2x + 1/3 = 0 <=> 2x = -1/3 <=> x = -1/6

Vậy Min A = -1 tại x = -1/6

b) Ta có: -(4/9x - 2/5)6 \(\le\)\(\forall\)x

=> -(4/9x - 2/15)6 + 3 \(\le\)\(\forall\)x

=> B \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> 4/9x - 2/15 = 0 <=> 4/9x = 2/15 <=> x = 3/10

vậy Max B = 3 tại x = 3/10

17 tháng 8 2019

Đúng ko vậy bạn

A=3(x^2+2/3x-1)

=3(x^2+2*x*1/3+1/9-10/9)

=3(x+1/3)^2-10/3>=-10/3

Dấu = xảy ra khi x=-1/3

\(B=1+\dfrac{15}{x^2+x+5}=1+\dfrac{15}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}}< =1+15:\dfrac{19}{4}=1+\dfrac{60}{19}=\dfrac{79}{19}\)

Dấu = xảy ra khi x=-1/2

2 tháng 6 2023

thử hỏi dạng toán lớp 8 cho lớp 6 ai ngờ làm đc ;-;;

1 tháng 9 2021

a)A=4(x+11/8)^2 -153/16

Min A=-153/16 khi x=-11/8

b)B=3(x-1/3)^2 -4/3

Min B=-4/3 khi x=1/3

1 tháng 9 2021

Bài 1:

a) \(A=4x^2+11x-2=\left(4x^2+11x+\dfrac{121}{16}\right)-\dfrac{153}{16}=\left(2x+\dfrac{11}{4}\right)^2-\dfrac{153}{16}\ge-\dfrac{153}{16}\)

\(minA=-\dfrac{153}{16}\Leftrightarrow x=-\dfrac{11}{8}\)

b) \(B=3x^2-2x-1=3\left(x^2-\dfrac{2}{3}x+\dfrac{1}{9}\right)-\dfrac{4}{3}=3\left(x-\dfrac{1}{3}\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\)

\(minB=-\dfrac{4}{3}\Leftrightarrow x=\dfrac{1}{3}\)

Bài 2:

a) \(A=-x^2+3x-1=-\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{5}{4}=-\left(x-\dfrac{3}{2}\right)^2+\dfrac{5}{4}\le\dfrac{5}{4}\)

\(maxA=\dfrac{5}{4}\Leftrightarrow x=\dfrac{3}{2}\)

b) \(B=-x^2-4x+7=-\left(x^2+4x+4\right)+11=-\left(x+2\right)^2+11\le11\)

\(maxB=11\Leftrightarrow x=-2\)