Cho đa thức f(x) + x^8 - 101x^7+101x^6-101x^5+...+101x^2-101x+25 . Tính f(100)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(100)=x8-(100+1)x7+(100+1)x6-(100+1)x5+....+(100+1)x2-(100+1)x+25
=x8-(x+1)x7+(x+1)x6-(x+1)x5+....+(x+1)x2-(x+1)x+25
=x8-x8-x7+x7+x6-x6-x5+...+x3+x2-x2-x+25
=25
vậy f(100)=25
\(f\left(100\right)\Rightarrow x=100\)
\(\Rightarrow x+1=101\)
Thay x + 1 = 101 ta được:
\(f\left(100\right)-x^8-\left(x+1\right)x^7+\left(x+1\right)x^6-\left(x+1\right)x^5+...+\left(x+1\right)x^2-\left(x+1\right)x+25\)
\(=x^8-\left(x^8+x^7\right)+\left(x^7+x^6\right)-\left(x^6+x^5\right)+...+\left(x^3+x^2\right)-\left(x^2+x\right)+25\)
\(=x^8-x^8-x^7+x^7+x^6-x^6-x^5+...+x^3+x^2-x^2-x+25\)
\(=-x+25\)
\(=-100+25\)
\(=-75\)
f(100)=> x=100
=>x+1=101
thay x+1=101 ta được:
f(100)=x8-(x+1)x7+(x+1)x6-(x+1)x5+...+(x+1)x2-(x+1)x+25
=x8-(x8+x7)+(x7+x6)-(x6+x5)+...+(x3+x2)-(x2+x)+25
=x8-x8-x7+x7+x6-x6-x5+...+x3+x2-x2-x+25
=-x+25
=-100+25
=-75