K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 4 2021

Lời giải:
Ta nhớ lại công thức, trong tam giác $ABC$ có $AB=c, BC=a, CA=b$ thì:

$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R$.

Ứng vào bài toán, với $\sin A=\sin 120=\frac{\sqrt{3}}{2}$ và $a=BC=6$ thì:

$R=\frac{a}{2\sin A}=\frac{6}{2.\frac{\sqrt{3}}{2}}=2\sqrt{3}$

17 tháng 6 2019

Gọi đường tròn (O; R) là đường tròn ngoại tiếp tam giác ABC.


Kẻ đường kính AO cắt (O) tại D.

Hai tam giác vuông ABH và ADC có ∠ABH =∠ADC (cùng chắn cung AC) nên chúng đồng dạng.

=>ABAD=AHAC=>ABAD=AHAC

=>AD=AB⋅ACAH=6⋅103=20(cm)=>AD=AB⋅ACAH=6⋅103=20(cm)

Do đó, R=AD2=202=10(cm)

P.s:Ko chắc 

29 tháng 10 2023

Xét ΔABC có \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)

=>\(\widehat{BAC}+45^0+105^0=180^0\)

=>\(\widehat{BAC}=30^0\)

=>\(\widehat{BAD}=\widehat{CAD}=15^0\)

Xét ΔADB có \(\widehat{BAD}+\widehat{ABD}+\widehat{ADB}=180^0\)

=>\(\widehat{ADB}=180^0-15^0-45^0=120^0\)

Xét ΔADB có

\(\dfrac{AB}{sinADB}=\dfrac{AD}{sinB}\)

=>\(\dfrac{AB}{sin120}=\dfrac{4}{sin45}=4:\dfrac{\sqrt{2}}{2}=4\sqrt{2}\)

=>\(AB=2\sqrt{6}\)

Xét ΔABC có \(\dfrac{AB}{sinC}=2R\)

=>\(2R=\dfrac{2\sqrt{6}}{sin105}=12-4\sqrt{3}\)

=>\(R=6-2\sqrt{3}\)

28 tháng 9 2023

Áp dụng đl sin vào tam giác ABC có:

\(\dfrac{AC}{sinB}=2R\\ \Leftrightarrow R=\dfrac{2\sqrt{2}}{sin\left(45\right)}:2=2\left(cm\right)\)

Vậy bán kính R của đường tròn ngoại tiếp tam giác ABC bằng `2` cm.