K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2017

1 nha pn >.< kb mk nha <3

18 tháng 12 2023

Gọi ước chung lớn nhất của a và b là d ta có:

\(\left\{{}\begin{matrix}n+1⋮d\\4n^2+8n+5⋮d\end{matrix}\right.\)

⇒ (4n 2 + 4n) + (4n + 4) + 1 ⋮ d

   ⇒4n(n + 1) + 4(n + 1) + 1 ⋮ d

⇒ (n +1).(4n + 4) + 1 ⋮ d

⇒ 1 ⋮ d ⇒ d = 1 

⇒(a;b) = 1 hay a; b là hai số nguyên tố cùng nhau (đpcm)

18 tháng 12 2023

\(325+376\\ \)

31 tháng 5 2018

Phân tích b ra bằng hằng đẳng thức

Ta có: \(b=4n^2+8n+4+1\)

\(=4\left(n^2+2n+1\right)+1\)

\(=4\left(n+1\right)^2+1\)

Gọi d là ước chung của a,b

Ta có: \(\orbr{\begin{cases}n+1⋮d\\4\left(n+1\right)^2+1⋮d\end{cases}}\)

Mà \(4\left(n+1\right)^2⋮\left(n+1\right)\)

Vậy d=1 suy ra a và b là hai số nguyên tố cùng nhau

31 tháng 5 2018

Sửa lại: giả sử d là ƯCLN

14 tháng 11 2018

tao ko có biết

16 tháng 9 2023

1. Đặt \(ƯCLN\left(5n+3,6n+1\right)=d\) với \(d\ne1\)

\(\Rightarrow\left\{{}\begin{matrix}5n+3⋮d\\6n+1⋮d\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}30n+18⋮d\\30n+5⋮d\end{matrix}\right.\)

\(\Rightarrow13⋮d\)

\(\Rightarrow d\in\left\{1,13\right\}\)

Nhưng vì \(d\ne1\) nên \(d=13\). Vậy \(ƯCLN\left(5n+3,6n+1\right)=13\)

2. Gọi \(ƯCLN\left(4n+3,5n+4\right)=d\) 

\(\Rightarrow\left\{{}\begin{matrix}4n+3⋮d\\5n+4⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}20n+15⋮d\\20n+16⋮d\end{matrix}\right.\)

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\)

 Vậy \(ƯCLN\left(4n+3,5n+4\right)=1\) nên 2 số này nguyên tố cùng nhau. (đpcm)

 3: Tương tự 2 nhưng khi đó \(d\in\left\{1,2\right\}\). Nhưng vì cả 2 số \(2n+1,6n+5\) đều là số lẻ nên chúng không thể có ƯC là 2. Vậy \(d=1\)

 4. Tương tự 3.

 

 

AH
Akai Haruma
Giáo viên
16 tháng 9 2023

Bạn nên tách riêng rẽ từng bài ra để đăng cho mọi người quan sát dễ hơn nhé.

20 tháng 12 2018

Đặt \(A=\frac{6n+99}{3n+4}=\frac{6n+8+91}{3n+4}=\frac{2\left(3n+4\right)91}{3n+4}+\frac{91}{3n+4}=2+\frac{91}{3n+4}\)

a) Để A là số tự nhiên thì \(91⋮3n+4⋮3n+4\)là ước của 91 hay 3n + 4 \(\in\left\{1;7;13;91\right\}\)

Ta có bảng :

3n + 4171391
n-11329
nhận xétloạithỏa mãnthỏa mãnthỏa mãn

Vậy ......

b) Để A là phân số tối giản thì \(91\text{không chia hết cho 3n + 4 hay 3n + 4 không là ước của 91}\)

=> 3n + 4 ko chia hết cho ước nguyên tố của 91

=> 3n + 4 ko chia hết cho 7 => \(n\ne7k+1\)

=> 3n + 4 ko chia hết cho 13 => \(n\ne13m+3\)