cho a=8n+193 và b=4n+3 với n là số tự nhiên tìm số tự nhiên n để a và b nguyên tố cùng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ước chung lớn nhất của a và b là d ta có:
\(\left\{{}\begin{matrix}n+1⋮d\\4n^2+8n+5⋮d\end{matrix}\right.\)
⇒ (4n 2 + 4n) + (4n + 4) + 1 ⋮ d
⇒4n(n + 1) + 4(n + 1) + 1 ⋮ d
⇒ (n +1).(4n + 4) + 1 ⋮ d
⇒ 1 ⋮ d ⇒ d = 1
⇒(a;b) = 1 hay a; b là hai số nguyên tố cùng nhau (đpcm)
Phân tích b ra bằng hằng đẳng thức
Ta có: \(b=4n^2+8n+4+1\)
\(=4\left(n^2+2n+1\right)+1\)
\(=4\left(n+1\right)^2+1\)
Gọi d là ước chung của a,b
Ta có: \(\orbr{\begin{cases}n+1⋮d\\4\left(n+1\right)^2+1⋮d\end{cases}}\)
Mà \(4\left(n+1\right)^2⋮\left(n+1\right)\)
Vậy d=1 suy ra a và b là hai số nguyên tố cùng nhau
Cho p/s M=8n+193/4n+3
a) Tim số tự nhiên để M là số tự nhiên
b) Tìm số tự nhiên n để M là p/s tối giản
1. Đặt \(ƯCLN\left(5n+3,6n+1\right)=d\) với \(d\ne1\)
\(\Rightarrow\left\{{}\begin{matrix}5n+3⋮d\\6n+1⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}30n+18⋮d\\30n+5⋮d\end{matrix}\right.\)
\(\Rightarrow13⋮d\)
\(\Rightarrow d\in\left\{1,13\right\}\)
Nhưng vì \(d\ne1\) nên \(d=13\). Vậy \(ƯCLN\left(5n+3,6n+1\right)=13\)
2. Gọi \(ƯCLN\left(4n+3,5n+4\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}4n+3⋮d\\5n+4⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}20n+15⋮d\\20n+16⋮d\end{matrix}\right.\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(ƯCLN\left(4n+3,5n+4\right)=1\) nên 2 số này nguyên tố cùng nhau. (đpcm)
3: Tương tự 2 nhưng khi đó \(d\in\left\{1,2\right\}\). Nhưng vì cả 2 số \(2n+1,6n+5\) đều là số lẻ nên chúng không thể có ƯC là 2. Vậy \(d=1\)
4. Tương tự 3.
Bạn nên tách riêng rẽ từng bài ra để đăng cho mọi người quan sát dễ hơn nhé.
Đặt \(A=\frac{6n+99}{3n+4}=\frac{6n+8+91}{3n+4}=\frac{2\left(3n+4\right)91}{3n+4}+\frac{91}{3n+4}=2+\frac{91}{3n+4}\)
a) Để A là số tự nhiên thì \(91⋮3n+4⋮3n+4\)là ước của 91 hay 3n + 4 \(\in\left\{1;7;13;91\right\}\)
Ta có bảng :
3n + 4 | 1 | 7 | 13 | 91 |
n | -1 | 1 | 3 | 29 |
nhận xét | loại | thỏa mãn | thỏa mãn | thỏa mãn |
Vậy ......
b) Để A là phân số tối giản thì \(91\text{không chia hết cho 3n + 4 hay 3n + 4 không là ước của 91}\)
=> 3n + 4 ko chia hết cho ước nguyên tố của 91
=> 3n + 4 ko chia hết cho 7 => \(n\ne7k+1\)
=> 3n + 4 ko chia hết cho 13 => \(n\ne13m+3\)
1 nha pn >.< kb mk nha <3