Giá trị của x trong tỉ lệ thức \(\frac{3x+2}{5x+7}=\frac{3x-1}{5x+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng t/c của dãy tỉ số bằng nhau ta có: \(\frac{3x+2}{5x+7}=\frac{3x-1}{5x+1}=\frac{\left(3x+2\right)-\left(3x-1\right)}{\left(5x+7\right)-\left(5x+1\right)}=\frac{3}{6}=\frac{1}{2}\)
=> \(\frac{3x+2}{5x+7}=\frac{1}{2}\)=> 2(3x+2) = 5x + 7 => 6x + 4 = 5x + 7 => 6x - 5x = 7 - 4 => x = 3
Vậy x = 3
bài 1
\(\frac{3x-y}{x+y}=\frac{3}{4}\)
\(\Rightarrow\left(3x-y\right).4=\left(x+y\right)3\)
\(\Rightarrow12x-4y=3x+3y\)
\(\Rightarrow9x=7y\)
\(\Rightarrow\frac{x}{y}=\frac{7}{9}\)
Vậy \(\frac{x}{y}=\frac{7}{9}\)
Ta có :\(\frac{\text{3x + 2}}{\text{5x + 7}}=\frac{\text{3x -1}}{\text{5x +1}}\)
=> ( 5x + 1 ) . ( 3x + 2 ) = ( 3x - 1 ) . ( 5x + 7 )
=> 5x(3x + 2 ) + ( 3x + 2 ) = 3x(5x + 7 ) - ( 5x + 7 )
=> ( 15x2 + 10x ) + ( 3x + 2 ) = ( 15x2 + 21x ) - ( 5x + 7 )
=> ( 3x + 2 ) + ( 5x + 7 ) = ( 15x2 + 21x ) - ( 15x2 + 10x )
=> ( 3x + 5x ) + ( 2 + 7 ) = ( 15x2 - 15x2 ) + ( 21x - 10x )
=> 8x + 9 = 11x
=> 9 = 11x - 8x
=> 9 = 3x
=> x = 3
Vậy x = 3
~~Học tốt~~
Ta có \(\frac{3x+2}{5x+7}\)=\(\frac{3x-1}{5x+1}\)=\(\frac{3x+2-3x+1}{5x+7-5x-1}\)=\(\frac{1}{2}\)
=> \(\frac{3x+2}{5x+7}\)=\(\frac{1}{2}\)=> ( 3x + 2 ) . 2 = 5x + 7 . 1 => 6x + 4 = 5x + 7 => x=3
Đặt \(B=\frac{2\sqrt{x}+3}{\sqrt{x}-1}=\frac{2\sqrt{x}-2+5}{\sqrt{x}-1}=\frac{2\left(\sqrt{x}-1\right)+5}{\sqrt{x}-1}=2+\frac{5}{\sqrt{x}-1}\)
\(\Rightarrow B\in Z\Leftrightarrow2+\frac{5}{\sqrt{x}-1}\in Z\Leftrightarrow\frac{5}{\sqrt{x}-1}\in Z\Leftrightarrow5⋮\sqrt{x}-1\Leftrightarrow\sqrt{x}-1\inƯ\left(5\right)\)
\(\Rightarrow\sqrt{x}-1\in\left\{-5;-1;1;5\right\}\)
Vì x dương\(\Rightarrow\sqrt{x}-1\ge0\)
\(\Rightarrow\sqrt{x}-1\in\left\{1;5\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{2;6\right\}\)
\(\Rightarrow x\in\left\{4;36\right\}\)
Vậy số phần tử của tập hợp A là 2
\(\frac{x-1}{x+5}=\frac{6}{7}\Leftrightarrow\frac{x-1}{6}=\frac{x+5}{7}\)
\(\Leftrightarrow\frac{7\left(x-1\right)}{42}=\frac{6\left(x+5\right)}{42}\)
\(\Leftrightarrow7\left(x-1\right)=6\left(x+5\right)\)
\(\Leftrightarrow7x-7=6x+30\)
\(\Leftrightarrow7x-6x=7+30\)
\(\Leftrightarrow x=37\)
Vậy nghiệm của phương trình là x = 37
\(a,\frac{3x+2}{5x+7}=\frac{3x-1}{5x-1}=\frac{\left(3x+2\right)-\left(3x-1\right)}{\left(5x+7\right)-\left(5x-1\right)}=\frac{3}{8};\frac{3x+2}{5x+7}=\frac{3}{8}\Leftrightarrow24x+16=15x+21\Leftrightarrow9x=5\Leftrightarrow x=\frac{5}{9}\) \(b,\frac{37-x}{x+13}=\frac{3}{7}\Leftrightarrow37.7-7x=3x+39\Leftrightarrow259-7x=3x+39\Leftrightarrow220-7x=3x\Leftrightarrow10x=220\Leftrightarrow x=22\) \(c,\frac{x+1}{2x+1}=\frac{0,5x+2}{x+3}=\frac{x+4}{2x+6}=\frac{\left(x+4\right)-\left(x+1\right)}{2x+6-\left(2x+1\right)}=\frac{3}{5};\frac{x+1}{2x+1}=\frac{3}{5}\Leftrightarrow5x+5=6x+3\Leftrightarrow x=2\) \(d,\frac{x-2}{x+2}=\frac{x+3}{x-4}=\frac{\left(x+3\right)-\left(x-2\right)}{\left(x-4\right)-\left(x+2\right)}=\frac{5}{-6};\frac{x-2}{x+2}=\frac{5}{-6}\Leftrightarrow6\left(2-x\right)=5x+10\Leftrightarrow2-6x=5x\Leftrightarrow x=\frac{2}{11}\) \(f,\frac{3x-5}{x}=\frac{9x}{3x+2}=\frac{9x-15}{3x}=\frac{9x-\left(9x-15\right)}{\left(3x+2\right)-3x}=\frac{15}{2};\frac{9x}{3x+2}=\frac{15}{2}\Leftrightarrow18x=45x+30\Leftrightarrow27x+30=0\Leftrightarrow x=\frac{-10}{9}\) \(e,\frac{x+2}{6}=\frac{5x-1}{5}\Leftrightarrow5\left(x+2\right)=6\left(5x-1\right)\Leftrightarrow5x+10=30x-6\Leftrightarrow10=25x-6\Leftrightarrow25x=16\Leftrightarrow x=\frac{16}{25}\)
a) Ta có: \(M=\frac{2x+5}{x+1}=\frac{2\left(x+1\right)+3}{x+1}=\frac{2x+2+3}{x+1}\)
Vì \(2x+2⋮\left(x+1\right)\Rightarrow3⋮\left(x+1\right)\)
Nên \(x+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow x=\left\{0;-2;2;-4\right\}\)
b) Tương tự
\(\frac{3x+2}{5x+7}=\frac{3x-1}{5x+1}\)ĐKXĐ: \(x\ne-\frac{1}{5};x\ne-\frac{7}{5}\)
\(\Rightarrow\left(3x+2\right)\left(5x+1\right)=\left(5x+7\right)\left(3x-1\right)\)
\(\Leftrightarrow15x^2+13x+2=15x^2+16x-7\)
\(\Leftrightarrow3x=9\)
\(\Leftrightarrow x=3\)
\(\frac{3x+2}{5x+7}\)= \(\frac{3x-1}{5x+1}ĐKXĐ:x#\)- \(\frac{1}{5};x#-\frac{1}{5};x#-\frac{7}{5}\)
< = > (\(\left(3x+2\right)\left(5x+1\right)=\left(5x+7\right)\left(3x-1\right)\)
< = > \(3x=9\)
\(x=3\)
số phải tìm :3