tìm các số nguyên x thoả mãn : |2x-2|-3x+1=-2
tìm các số nguyên n, biết : n+1 là bội của n-5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5 suy ra n+1chia hết n-5
suy ra (n+1)-(n-5)chia hết n-5
tương đương n+1-n+5 chia hết n-5
tương đương 6 chia hết n-5
suy ra n-5 thuộc vào Ư6=1,2,3,6,-1,-2,-3,-6
suy ra n thuộc vào =6,7,8,11,4,3,2,-1
Bài 10:
a: 2x-3 là bội của x+1
=>\(2x-3⋮x+1\)
=>\(2x+2-5⋮x+1\)
=>\(-5⋮x+1\)
=>\(x+1\in\left\{1;-1;5;-5\right\}\)
=>\(x\in\left\{0;-2;4;-6\right\}\)
b: x-2 là ước của 3x-2
=>\(3x-2⋮x-2\)
=>\(3x-6+4⋮x-2\)
=>\(4⋮x-2\)
=>\(x-2\inƯ\left(4\right)\)
=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{3;1;4;0;6;-2\right\}\)
Bài 14:
a: \(4n-5⋮2n-1\)
=>\(4n-2-3⋮2n-1\)
=>\(-3⋮2n-1\)
=>\(2n-1\inƯ\left(-3\right)\)
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
=>\(2n\in\left\{2;0;4;-2\right\}\)
=>\(n\in\left\{1;0;2;-1\right\}\)
mà n>=0
nên \(n\in\left\{1;0;2\right\}\)
b: \(n^2+3n+1⋮n+1\)
=>\(n^2+n+2n+2-1⋮n+1\)
=>\(n\left(n+1\right)+2\left(n+1\right)-1⋮n+1\)
=>\(-1⋮n+1\)
=>\(n+1\in\left\{1;-1\right\}\)
=>\(n\in\left\{0;-2\right\}\)
mà n là số tự nhiên
nên n=0
*Bạn ơi, bài 3 mình ko hiểu đề cho lắm ấy?? Bạn xem lại đề thử nhé!! Nhớ tk giúp mình nha 😊*
Bài 1:
Tổng các số nguyên x thỏa mãn bài toán là:
-99+(-98)+(-97)+(-96)+...+95+96
= -99+(-98)+(-97)+(-96+96)+(-95+95)+...+(-1+1)+0
= -99+(-98)+(-97)+0+0+...+0
= -294
Bài 4:
n-1 thuộc Ư(15)={1;-1;3;-3;5;-5;15;-15}
=> n thuộc {2;0;4;-2;6;-4;16;-14}
Mà n thuộc N
Do đó: n thuộc {2;0;4;6;16}
Vậy...
Bài 5:
5+n chia hết cho n+1
=> (n+1)+4 chia hết cho n+1
Vì n+1 chia hết cho n+1
Nên 4 chia hết cho n+1
Hay n+1 thuộc Ư(4)={1;-1;2;-2;4;-4}
=> n thuộc {0;-2;1;-3;3;-5}
Vậy...
Bài 1: Các số nguyên x thỏa mãn là: -99; -98 ; -97;....; 96
Tổng các số nguyên x là: (-99)+ (-98) + (97) +...+96
= ( -96+96) + (-95+95) +...+ (-99) + (-98) +(-97)
= -294
Vậy...
Bài 5
Ta có (5+n)=(n+1)+4
Vì (n+1)\(⋮\)(n+1)
Để [(n+1)+4]\(⋮\)(n+1)<=>4\(⋮\)(n+1)<=>(n+1)\(\in\)Ư(4)={±1;±2;±4}
Ta có bảng sau
n+1 | -4 | -2 | -1 | 1 | 2 | 4 |
n | -5 | -3 | -2 | 0 | 1 | 3 |
Vậy...