K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:Tính tổng các số sau:a/ \(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{2003x2004}\)b/20x15-20x13+20c/\(\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+...+\frac{1}{2003x2005}\)Bài 2:Cho A=\(\frac{n-1}{n+4}\)a/Hãy tìm n nguyên để A là một phân số.b/Hãy tìm n nguyên để A là một số nguyên.Bài 3:A/Số nguyên a phải có điều kiện gì để ta có phân số:a/\(\frac{32}{a-1}\)b/\(\frac{a}{5a+30}\)B/Số nguyên a phải có điều kiện gì...
Đọc tiếp

Bài 1:Tính tổng các số sau:

a/ \(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{2003x2004}\)

b/20x15-20x13+20

c/\(\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+...+\frac{1}{2003x2005}\)

Bài 2:Cho A=\(\frac{n-1}{n+4}\)

a/Hãy tìm n nguyên để A là một phân số.

b/Hãy tìm n nguyên để A là một số nguyên.

Bài 3:

A/Số nguyên a phải có điều kiện gì để ta có phân số:

a/\(\frac{32}{a-1}\)

b/\(\frac{a}{5a+30}\)

B/Số nguyên a phải có điều kiện gì để các phân số sau là số nguyên:

a/\(\frac{a+1}{3}\)

b/\(\frac{a-2}{5}\)

c/\(\frac{a-2}{a-4}\)

C/Tìm số nguyên x để các phân số sau là số nguyên:

a/\(\frac{13}{x-1}\)

b/\(\frac{x+3}{x-2}\)

Bài 4:Cho \(\frac{a}{b}=\frac{c}{d}\)

Hãy chứng minh  rằng \(\frac{2a-3c}{2b-3d}=\frac{2a+3c}{2a+3d}\)

Bài 5:Tính nhanh:

a/465+[58+(-465)+(-38)]

b/217+[43+(-217)+(-23)]

Bài 6:Cho A=\(\frac{10^{2004}+1}{10^{2005}+1}\)và B=\(\frac{10^{2005}+1}{10^{2006}+1}\)

So sánh A và B

Bài 7:Tính giá trị các biểu thức sau:

a/A=(-1)x(-1)2x(-1)3x(-1)4x...x(-1)2011

b/B=70x\(\left(\frac{131313}{565656}+\frac{131313}{727272}+\frac{131313}{909090}\right)\)

 

0
9 tháng 6 2018

\(M=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(\Rightarrow M=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow M=1-\frac{1}{100}\)

\(\Rightarrow M=\frac{100}{100}-\frac{1}{100}=\frac{99}{100}\)

\(b,N=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

\(\Rightarrow N=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)\)

\(\Rightarrow N=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{97}-\frac{1}{99}\right)\)

\(\Rightarrow N=\frac{1}{2}.\left(1-\frac{1}{99}\right)=\frac{1}{2}.\frac{98}{99}\)

\(\Rightarrow N=\frac{1.98}{2.99}=\frac{49.2}{2.99}=\frac{49}{99}\)

8 tháng 6 2018

\(a,M=1-\frac{1}{100}=\frac{99}{100}\)

\(b=2N=\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+...+\frac{2}{97x99}\)

                  \(=1-\frac{1}{99}=\frac{98}{99}\)

   =>\(N=\frac{98}{99}:2=\frac{49}{99}\)

26 tháng 3 2017

a) Đặt \(A=\frac{1^2}{1.2}+\frac{2^2}{2.3}+.........+\frac{100^2}{100.101}\)

\(\Rightarrow A=\left(1^2+2^2+..........+100^2\right)\)\(.\left(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{100.101}\right)\)

\(\Rightarrow A=\left(1^2+2^2+......+100^2\right).\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{100}-\frac{1}{101}\right)\)

\(\Rightarrow A=\left(1^2+2^2+......+100^2\right).\left(1-\frac{1}{101}\right)\)

\(\Rightarrow A=\left(1^2+2^2+.....+100^2\right).\left(\frac{100}{101}\right)\)(a)

Đặt \(M=\left(1^2+2^2+........+100^2\right)\)

\(\Rightarrow M=1.1+2.2+.....+100.100\)

\(\Rightarrow M=1.\left(2-1\right)+2.\left(3-1\right)+....+100.\left(101-1\right)\)

\(\Rightarrow M=\left(1.2-1\right)+\left(2.3-2\right)+.....+\left(100.101-100\right)\)

\(\Rightarrow M=\left(1.2+2.3+.....+100.101\right)-\left(1+2+......+100\right)\)

\(\Rightarrow M=\left(1.2+2.3+......+100.101\right)-5050\)(1)

Đặt \(N=1.2+2.3+....+100.101\)

\(\Rightarrow3.N=1.2.3+2.3.3+......+100.101.3\)

\(\Rightarrow3N=1.2.\left(3-0\right)+2.3.\left(4-1\right)+......+100.101.\left(102-99\right)\)

\(\Rightarrow3N=\left(1.2.3-0\right)+\left(1.2.3-2.3.4\right)+.......+\left(100.101.102-100.101.99\right)\)

\(\Rightarrow3N=100.101.102-0\)

\(\Rightarrow N=343400\)

Thay N = 343400 vào 1) ta được:

M = 343400 - 5050 

=> M = 338350

Thay M = 338350 Vào (a) ta được:

A = 338350 . \(\frac{100}{101}\)

=> \(A=\frac{33835000}{101}\)

Vậy \(\frac{1^2}{1.2}+\frac{2^2}{2.3}+.........+\frac{100^2}{100.101}=\frac{33835000}{101}=335000\)

b) Đặt \(B=\frac{2^2}{1.3}+\frac{3^2}{2.4}+..........+\frac{59^2}{58.60}\)

\(\Rightarrow B=\left(2^2+3^2+........+59^2\right).\left(\frac{1}{1.3}+\frac{1}{2.4}+.....+\frac{1}{58.60}\right)\)

Đặt \(G=2^2+3^2+.........+59^2\)VÀ \(H=\frac{1}{1.3}+\frac{1}{2.4}+.........+\frac{1}{58.60}\)

\(\Rightarrow G=2.2+3.3+.......+59.59\) VÀ \(2.H=\frac{2}{1.3}+\frac{2}{2.4}+......+\frac{2}{58.60}\)

Rồi bạn làm như ở phần a) ý

25 tháng 7 2018

Câu a

\(S=\frac{3-1}{1x3}+\frac{5-3}{3x5}+\frac{7-5}{5x7}+...+\frac{2019-2017}{2017x2019}.\)

\(S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}=1-\frac{1}{2019}=\frac{2018}{2019}\)

Câu b

\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^6}+\frac{1}{3^7}\)

\(3A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^5}+\frac{1}{3^6}\)

\(2A=3A-A=1-\frac{1}{3^7}\Rightarrow A=\frac{1}{2}-\frac{1}{2.3^7}\)

13 tháng 7 2015

\(S.2=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)

\(S.2=\frac{1}{1}-\frac{1}{11}\)

\(S.2=\frac{10}{11}\)

\(S=\frac{10}{11}:2\)

\(S=\frac{5}{11}\)

5 tháng 1 2017

S = 5/11

9 tháng 6 2019

1. Đ/S: 99/100

2. Đ/S: 38/123

12 tháng 9 2020

có thể đây là bài lớp 4 nhưng mình nghĩ là các bạn lớp 5 cũng sẽ khó khăn đó

12 tháng 9 2020

dành cho các bn học sinh giỏi

7 tháng 2 2015

\(2A=\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+...+\frac{2}{999x1001}\)

\(2A=\frac{3-1}{1x3}+\frac{5-3}{3x5}+\frac{7-5}{5x7}+...+\frac{1001-999}{999x1001}\)

\(2A=\frac{3}{1x3}-\frac{1}{1x3}+\frac{5}{3x5}-\frac{3}{3x5}+\frac{7}{5x7}-\frac{5}{5x7}+...+\frac{1001}{999x1001}-\frac{999}{999x1001}\)

\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{999}-\frac{1}{1001}\)

\(2A=1-\frac{1}{1001}=\frac{1000}{1001}\)=> A = 500/1001

 

 

8 tháng 2 2015

\(\frac{500}{1001}\)!

8 tháng 7 2016

\(=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{9.11}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{11}\right)\)

\(=\frac{1}{2}.\frac{10}{11}\)

\(=\frac{5}{11}\)

8 tháng 7 2016

\(=\frac{1}{2}\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+....+\frac{2}{9\times11}\right)\)

\(=\frac{1}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{9}-\frac{1}{11}\right)\)

\(=\frac{1}{2}\times\left(1-\frac{1}{11}\right)\)

\(=\frac{1}{2}\times\frac{10}{11}\)

\(=\frac{5}{11}\)