Hai người thợ cùng làm một công việc trong 12 giờ thì xong. Nếu người thứ nhất làm 4 giờ và người thứ hai làm 7 giờ thì họ làm được 50% công việc. Hỏi người thứ hai làm công việc đó thì trong bao lâu sẽ hoàn thành xong công việc?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cả 2 người thợ làm cùng nhau mỗi giờ làm được
\(\dfrac{1}{4}+\dfrac{1}{6}=\dfrac{5}{12}\)( Công việc )
Cả 2 người thợ làm chung thì hoàn thành công việc sau
\(1:\dfrac{5}{12}=\dfrac{12}{5}=24h\)
Gọi thời gian người thứ nhất và người thứ hai hoàn thành công việc khi làm một mình lần lượt là x,y
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{4}{x}+\dfrac{6}{y}=\dfrac{5}{12}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{24}\\\dfrac{1}{y}=\dfrac{1}{24}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=24\\y=24\end{matrix}\right.\)
Số T 2 người làm chung là 7=4+3
họ làm đc số phần cv là 1/12*4=1/3 cồng vc
3 giờ người 2 làm đc :1/3-1/2=1/6
1 mình người 2 làm trong 3*6=18 giờ
ĐS..
Giả sử người thứ nhất cùng người thứ hai làm trong 3 giờ thì được:
1/16 x 3 = 3/16 (công việc)
Thời gian còn lại của người thứ hai là:
6 – 3 = 3 (giờ)
3 giờ của người thứ hai thì làm được:
1/4 – 3/16 = 1/16 (công việc)
1 giờ người thứ hai làm được:
1/16 : 3 = 1/48 (công việc)
1 giờ người thứ nhất làm được;
1/16 – 1/48 = 1/24 (công việc)
Thời gian một mình người thứ nhất làm xong công việc là:
1 : 1/24 = 24 (giờ)
Đáp số: 24 giờ.
Mình xin phép sửa lại một chút nha bạn:
Gọi thời gian người thứ hai hoàn thành công việc khi làm một mình là y(giờ)(ĐK: y>0)
Gọi thời gian người thứ nhất hoàn thành công việc khi làm một mình là x(giờ)(ĐK: x>0)
Trong 1 giờ, người thứ nhất làm được: \(\dfrac{1}{x}\)(công việc)
Trong 1 giờ, người thứ hai làm được \(\dfrac{1}{y}\)(công việc)
Trong 1 giờ, hai người làm được \(\dfrac{1}{12}\)(công việc)
Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\)
Trong 7 giờ người thứ nhất làm được \(7\cdot\dfrac{1}{x}=\dfrac{7}{x}\)(công việc)
Trong 4 giờ người thứ hai làm được \(4\cdot\dfrac{1}{y}=\dfrac{4}{y}\)(công việc)
Khi người thứ nhất làm trong 7 giờ và người thứ hai làm trong 4 giờ thì hai người làm được một nửa công việc nên ta có:
\(\dfrac{7}{x}+\dfrac{4}{y}=\dfrac{1}{2}\)
Do đó, ta có hệ phương trình sau:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{7}{x}+\dfrac{4}{y}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{7}{x}+\dfrac{7}{y}=\dfrac{7}{12}\\\dfrac{7}{x}+\dfrac{4}{y}=\dfrac{1}{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{3}{y}=\dfrac{7}{12}-\dfrac{1}{2}=\dfrac{1}{12}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=36\\\dfrac{1}{x}+\dfrac{1}{36}=\dfrac{1}{12}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=36\\\dfrac{1}{x}=\dfrac{1}{12}-\dfrac{1}{36}=\dfrac{1}{18}\end{matrix}\right.\)
=>x=18 và y=36
Vậy: Người thứ hai cần 36 giờ để hoàn thành công việc khi làm một mình
Gọi thời gian người thứ hai hoàn thành công việc khi làm một mình là y(giờ)(ĐK: y>0)
Gọi thời gian người thứ nhất hoàn thành công việc khi làm một mình là x(giờ)(ĐK: x>0)
Trong 1 giờ, người thứ nhất làm được: \(\dfrac{1}{x}\)(công việc)
Trong 1 giờ, người thứ hai làm được \(\dfrac{1}{y}\)(công việc)
Trong 1 giờ, hai người làm được \(\dfrac{1}{12}\)(công việc)
Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\)
Trong 7 giờ người thứ nhất làm được \(7\cdot\dfrac{1}{x}=\dfrac{7}{x}\)(công việc)
Trong 4 giờ người thứ hai làm được \(4\cdot\dfrac{1}{y}=\dfrac{4}{y}\)(công việc)
Khi người thứ nhất làm trong 7 giờ và người thứ hai làm trong 4 giờ thì hai người làm được một nửa công việc nên ta có:
\(\dfrac{7}{x}+\dfrac{4}{y}=\dfrac{1}{2}\)
Do đó, ta có hệ phương trình sau:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{7}{x}+\dfrac{4}{y}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{7}{x}+\dfrac{7}{y}=\dfrac{1}{12}\\\dfrac{7}{x}+\dfrac{4}{y}=\dfrac{1}{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{3}{y}=\dfrac{1}{12}-\dfrac{1}{2}=\dfrac{-5}{12}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-\dfrac{36}{5}< 0\left(loại\right)\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\end{matrix}\right.\)
Do đó: Đề sai rồi bạn!
Đáp án A
Gọi thời gian người thợ thứ nhất làm một mình xong việc là x(giờ) (x > 16)
Thời gian người thợ thứ hai làm một mình xong việc là y(giờ) (y > 16)
Suy ra trong thời gian 1 giờ người thợ thứ nhất làm được 1/x công việc
Trong thời gian 3 giờ người thợ thứ nhất làm được 3/x công việc
Trong thời gian 1 giờ người thợ thứ hai làm được 1/y công việc
Trong thời gian 6 giờ người thợ thứ hai làm được 6/y công việc
Hai người cùng làm trong 16 giờ thì xong việc, nên 1 giờ cả 2 người làm được 1/16 ta có phương trình:
Người thứ nhất làm 3 giờ và người thứ hai làm 6 giờ thì được một phần tư công việc, ta có phương trình:
Từ đó ta có hệ phương trình:
Kết luận: thời gian người thợ thứ nhất làm một mình xong việc là 24 (giờ)
Thời gian người thợ thứ hai làm một mình xong việc là 48 giờ
Mỗi giờ 2 người làm chung thì được 1:7=1/7 phần công việc
Mỗi giờ người thứ nhất làm một mình thì được 1:12=1/12 phần công việc
Mỗi giờ người thứ hai làm được 1/7-1/12=5/84 phần công việc
Vậy người thứ 2 hoàn thành công việc số trong 1:5/84=84/5=16,8 giờ
Đáp số 16,8 giờ
Trong 1h người 1 làm được 1/3(công việc)
Trong 1h người 2 làm được 1/2(công việc)
=>Trong 1h 2 người làm được 1/3+1/2=5/6(công việc)
=>Hai người cần 6/5h để hoàn thành công việc
Trong 1h người 1 làm được 1/3(công việc)
Trong 1h người 2 làm được 1/2(công việc)
=>Trong 1h 2 người làm được 1/3+1/2=5/6(công việc)
=>Hai người cần 6/5h để hoàn thành công việc
Hai người cùng làm trong \(4\)giờ thì được số phần công việc là:
\(4\div12=\frac{1}{3}\)(công việc)
Đổi: \(50\%=\frac{1}{2}\).
\(3\)giờ thì người thứ hai làm một mình được số phần công việc là:
\(\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\)(công việc)
Mỗi giờ người thứ hai làm một mình được số phần công việc là:
\(\frac{1}{6}\div3=\frac{1}{18}\)(công việc)
Người thứ hai làm một mình thì xong công việc trong số giờ là:
\(1\div\frac{1}{18}=18\)(giờ)